
Second Edition

Pediatric INFECTIOUS DISEASES ESSENTIALS FOR PRACTICE

SAMIR S. SHAH ALEX R. KEMPER ADAM J. RATNER

Pediatric Infectious Diseases: Essentials for Practice

NOTICE

Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the clinical practices accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the information contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information is of particular importance in connection with new or infrequently used drugs.

Pediatric Infectious Diseases: Essentials for Practice

Second Edition

Editor

Samir S. Shah, MD, MSCE

Director, Division of Hospital Medicine James M. Ewell Endowed Chair Attending Physician in Hospital Medicine and Infectious Diseases Cincinnati Children's Hospital Medical Center Professor of Pediatrics University of Cincinnati College of Medicine Cincinnati, Ohio

Associate Editors

Alex R. Kemper, MD, MPH, MS

Chief, Division of Ambulatory Pediatrics Nationwide Children's Hospital Professor of Pediatrics Ohio State University College of Medicine Columbus, Ohio

Adam J. Ratner, MD, MPH

Chief, Division of Pediatric Infectious Diseases Hassenfeld Children's Hospital at NYU Langone Associate Professor of Pediatrics and Microbiology New York University School of Medicine New York, New York

New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto Copyright © 2019 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-1-25-986152-9 MHID: 1-25-986152-X

The material in this eBook also appears in the print version of this title: ISBN: 978-1-25-986153-6, MHID: 1-25-986153-8.

eBook conversion by codeMantra Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education's prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED "AS IS." McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR WAR-RANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/ or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise. To our mentors for sharing their wisdom and knowledge To our families for providing love and support for all of our endeavors To our patients for teaching us and to their families for trusting us

Contents

Contril	butors	1
Prefac	e	
Abbrei	viations	S
SEC	TION 1 Practical Aspects 1	1
1.	Laboratory Diagnosis of Bacterial, Parasitic, and Fungal Infections 3 Alexander J. McAdam	2
2.	Laboratory Diagnosis of Viral Infections 12 Richard L. Hodinka	2
3.	Vaccine Safety and Risk Communication 26 Michael J. Smith 26	2
4.	Infection Prevention and Control in the Office 31 Ann-Christine Nyquist 31	S
5.	Infection Prevention and Control in the Hospital 37 Larry K. Kociolek and Maria Bovee 37	2
6.	Infectious Diseases Epidemiology 43 Lilliam Ambroggio and Amanda C. Schondelmeyer 43	2
7.	Quality Improvement in Infectious Diseases 47 Amanda C. Schondelmeyer and Lilliam Ambroggio	2
8.	Antibacterial Agents 53 Joshua D. Courter and Jennifer E. Girotto	2
9.	Antifungal Agents75Talene A. Metjian and Brian Fisher	S
10.	Antiviral Agents 89 Claudette L. Poole and David W. Kimberlin	2
SEC	TION 2 Sign and Symptoms	
11.	Chronic Abdominal Pain	2
12.	Ataxia 114 Claudio M. de Gusmão and Jeffrey L. Waugh	3
13.	Dysuria119Robyn A. Bockrath, Erin O. Harvey, and Virginia Hsu	S
14.	Headache 124 Robert A. Avery 124	3
15.	Joint Complaints	3
16.	Neck Pain 134 Kishore Vellody and Tony Tarchichi 134	3
17.	Rash 137 Kara N. Shah 137	3

18.	Noisy Breathing.	148
SEC	TION 3 Neurologic Infections 1	157
19.	Meningitis	159
20.	Encephalitis	167
21.	Transverse Myelitis	181
22.	Pediatric Movement Disorders and Infectious Disease	185
SEC	TION 4 Ophthalmologic Infections 1	193
23.	Conjunctivitis in the Neonate	195
24.	Conjunctivitis in the Older Child	199
25.	Periorbital and Orbital Infections	205
26.	Infectious Keratitis Anne K. Jensen and Gil Binenbaum	212
SEC	TION 5 Oral Cavity and Neck Infections	219
27.	Pharyngitis and Stomatitis	
28.	Peritonsillar and Retropharyngeal Abscess	230
29.	Cervical Lymphadenitis	236
30.	Dental Caries and Gingival and Periodontal Infections	244
SEC	TION 6 Upper Respiratory Infections	253
31.	Otitis Media	255
32.	Otitis Externa	262
33.	Sinusitis	267
34.	Croup Peter John Gill, Robert Bruce Wright, and Terry Klassen	282

SEC	TION 7 Lower Respiratory Infections 289
35.	Bronchiolitis
36.	Uncomplicated Pneumonia
37.	Complicated Pneumonia 312 Krow Ampofo and Samir S. Shah
38.	Recurrent Pneumonia 320 Georgia Koltsida and Howard B. Panitch 320
39.	Childhood Tuberculosis
SEC	TION 8 Cardiac Infections
40.	Infective Endocarditis
41.	Myocarditis and Pericarditis 359 John L. Jefferies and Ivan Wilmot
SEC	TION 9 Gastrointestinal Infections
42.	Gastroenteritis373Michelle W. Parker and Andrea T. Cruz
43.	Hepatitis. 379 Amy E. Taylor and William F. Balistreri
44.	Antibiotic-Associated Diarrhea and Clostridium difficile Infection Louis Valiquette and Caroline Quach
SEC	TION 10 Genitourinary Infections
45.	Urinary Tract Infections
46.	Pelvic Inflammatory Disease 402 Sarah R. Green and Nadja G. Peter
47.	Sexually Transmitted Infections in Adolescents
SEC	TION 11 Skin Infections
48.	Skin and Soft Tissue Infections 423 Matthew P. Kronman 423
49.	Bite Wound Infections 433 Lucas McWilliams, Erin M. Augustine, and Elizabeth R. Alpern
SEC	TION 12 Bone and Joint Infections
50.	Osteomyelitis
	Sandra Arnold
51.	Septic Arthritis
52.	Diskitis

. 289	SEC	CTION 13 Perinatal and Neonatal Infections. 471
. 291	53.	Congenital Infections 473 Renee E. Barrett and Patrick G. Gallagher
. 302	54.	Perinatal Infections 484 Thomas A. Hooven and Tara M. Randis
. 312	55.	Neonatal Fever 493 Paul L. Aronson and Mark I. Neuman 493
. 320	SEC	CTION 14 HIV Exposure and Infection
. 330	56.	HIV-Exposed and HIV At-Risk Infants 503 Matthew S. Kelly, Richard M. Rutstein, and Andrew P. Steenhoff
2.42	57.	Care of the HIV-Infected Child
. 343		Elizabeth D. Lowenthal, Andrew P. Steenhoff,
. 345		Wolfgang Rennert, and Richard M. Rutstein
. 359	58.	Infections in HIV-Infected Children
	59.	Preventing HIV infection
. 371		Eimear Kitt, Andrew P. Steenhoff, and Richard M. Rutstein
. 373	SEC	CTION 15 Infections Complicating Chronic Diseases 541
. 379	60.	Infections in Children with Neurologic Impairment 543 Joanna Thomson and Jay G. Berry
. 384	61.	Infections in Asplenic Children
	62.	Infections in Atopic Dermatitis
. 393		
. 395	SEC	CTION 16 Congenital Immune Deficiency Syndromes 567
. 402	63.	Evaluation of the Child with Suspected Immunodeficiency. 569 Kathleen E. Sullivan 569
	SEC	TION 17 Fever Syndromes
. 410	64.	Fever of Unknown Origin
	01.	Katherine M. Richardson and Mary Anne Jackson
. 421	65.	Autoinflammatory Syndromes Including Periodic Fevers
. 423		Jeroen C. H. van der Hilst and Joost P. H. Drenth
. 433	66.	Mononucleosis Syndromes. 595 Beth C. Marshall and William C. Koch
	67.	Kawasaki Disease 600 Adriana H. Tremoulet and Jane C. Burns
. 441		
. 443	SEC	TION 18 Travel-Related Infections 609
. 455	68.	Pretravel Preparation 611 John C. Christenson 611
	69.	Fever in the Returned Traveler
. 464		Noah D. McKittrick and Angelle Desiree LaBeaud
	70.	Malaria 626 Miriam K. Laufer

- 71. Intestinal Parasites
 637

 Nisha T. Manickam and Michael Cappello
- 72. Infectious Disease Issues in Internationally Adopted Children 655 Mary Allen Staat

SECTION 19 Healthcare-Acquired Infections 665

75. Central Venous Catheter-Associated Bloodstream Infections 681 Elizabeth Ristagno and Kristina Bryant

Index .																																			689	9
---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-----	---

Contributors

Elizabeth R. Alpern, MD, MSCE [49]

Professor of Pediatrics

Division of Pediatric Emergency Medicine Northwestern University Feinberg School of Medicine Ann and Robert H. Lurie Children's Hospital of Chicago Chicago, Illinois

Brian K. Alverson, MD [35]

Professor, Department of Pediatrics Warren Alpert School of Medicine at Brown University Director, Division of Hospital Medicine Hasbro Children's Hospital Providence, Rhode Island

Lilliam Ambroggio, PhD [6,7]

Associate Professor Department of Pediatrics University of Cincinnati College of Medicine Divisions of Hospital Medicine and of Biostatistics and Epidemiology Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Krow Ampofo, MD [37]

Professor, Department of Pediatrics Division of Pediatric Infectious Diseases University of Utah School of Medicine Salt Lake City, Utah

Donald H. Arnold, MD, MPH [31]

Professor of Pediatrics Division of Emergency Medicine Vanderbilt University School of Medicine Nashville, Tennessee

Sandra Arnold, MD, MSc [50]

Professor, Department of Pediatrics Chief, Division of Infectious Diseases LeBonheur Children's Hospital University of Tennessee Health Science Center Memphis, Tennessee

Paul L. Aronson, MD [55]

Assistant Professor, Departments of Pediatrics and Emergency Medicine Section of Pediatric Emergency Medicine Yale University School of Medicine New Haven, Connecticut

Erin M. Augustine, MD [49]

Assistant Professor, Department of Pediatrics Northwestern University Feinberg School of Medicine Division of Pediatric Emergency Medicine Ann and Robert H. Lurie Children's Hospital of Chicago Chicago, Illinois

Robert A. Avery, DO, MSCE [14]

Assistant Professor of Ophthalmology and Neurology Perelman School of Medicine at the University of Pennsylvania Philadelphia, Pennsylvania

William F. Balistreri, MD [43]

Professor Department of Pediatrics Director Emeritus Pediatric Liver Care Center Medical Director Emeritus Fellowship in Transplant Hepatology University of Cincinnati Cincinnati, Ohio

Natalie Banniettis, MD [23,24]

Assistant Professor, Department of Pediatrics Division of Pediatric Infectious Diseases State University of New York Downstate Medical Center Brooklyn, New York

Renee E. Barrett, MD [53]

Assistant Professor, Department of Pediatrics Division Neonatal-Perinatal Medicine Yale University School of Medicine New Haven, Connecticut

Jay G. Berry, MD, MPH [60]

Assistant Professor of Pediatrics Harvard University Medical School Division of General Pediatrics Associate in Medicine Complex Care Service Boston Children's Hospital Boston, Massachusetts

Gil Binenbaum, MD, MSCE [26]

Richard Shafritz Chair of Ophthalmology Research Associate Professor of Ophthalmology Children's Hospital of Philadelphia University of Pennsylvania School of Medicine Philadelphia, Pennsylvania

Robyn A. Bockrath, MD [13]

Instructor, Department of Pediatrics Northwestern University Feinberg School of Medicine Division of Hospital-Based Medicine Ann and Robert H. Lurie Children's Hospital of Chicago Chicago, Illinois

Maria Bovee, MPH, CIC [5]

Infection Preventionist Ann and Robert H. Lurie Children's Hospital of Chicago Chicago, Illinois

Jenna W. Briddell, MD [28,32]

Assistant Professor, Department of Otolaryngology-Head & Neck Surgery and Department of Pediatrics Sidney Kimmel Medical College Thomas Jefferson University Philadelphia, Pennsylvania Attending Physician, Division of Otolaryngology Nemours Alfred I. duPont Hospital for Children Wilmington, Delaware

Kristina Bryant, MD [75]

Professor, Department of Pediatrics Division of Pediatric Infectious Diseases University of Louisville Hospital Epidemiologist Norton Children's Hospital Louisville, Kentucky

Jon M. Burnham, MD, MSCE [15]

Associate Professor of Pediatrics Perelman School of Medicine at the University of Pennsylvania Division of Rheumatology Children's Hospital of Philadelphia Philadelphia, Pennsylvania

Jane C. Burns, MD [67]

Professor and Chief Division of Allergy, Immunology, and Rheumatology Department of Pediatrics University of California, San Diego/Rady Children's Hospital San Diego, California

Carlos Gonzalez Cabezas, DDS, MSD, PhD [30]

Associate Professor, Department of Cariology, Restorative Sciences and Endodontics School of Dentistry University of Michigan Ann Arbor, Michigan

Michael G. W. Camitta, MD [40]

Associate Professor, Departments of Pediatrics and Medicine Divisions of Pediatric and Adult Cardiology Duke Pediatric and Congenital Heart Center Duke University Medical Center Durham, North Carolina

Michael Cappello, MD [71]

Professor of Pediatrics, Microbial Pathogenesis, and Public Health Chair, Council on African Studies Yale University School of Medicine New Haven, Connecticut

John C. Christenson, MD [68]

Professor of Clinical Pediatrics Chief, Clinical Services Ryan White Center for Pediatric Infectious Diseases and Global Health Indiana University School of Medicine Riley Hospital for Children Indianapolis, Indiana

Lawson A. B. Copley, MD, MBA [52]

Associate Professor, Department of Orthopaedic Surgery University of Texas Southwestern Medical Center Children's Medical Center Dallas Texas Scottish Rite Hospital for Children Dallas, Texas

Joshua D. Courter, PharmD [8]

Pharmacy Clinical Specialist Antimicrobial Stewardship and Hospital Medicine Division of Pharmacy Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Andrea T. Cruz, MD, MPH [42]

Associate Professor Department of Pediatrics Sections of Emergency Medicine and Infectious Diseases Baylor College of Medicine Houston, Texas

Claudio M. de Gusmão, MD [12]

Instructor, Department of Neurology Harvard Medical School Boston Children's Hospital Boston, Massachusetts

Sanyukta Desai, MD [27]

Clinical Fellow Division of Hospital Medicine Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Irina F. Dragan, DDS, MS [30]

Assistant Professor of Periodontology Tufts University School of Dental Medicine Boston, Massachusetts

Joost P. H. Drenth, MD, PhD [65]

Professor of Molecular Gastroenterology & Hepatology Department of Gastroenterology and Hepatology Radboud University Nijmegen Medical Center Nijmegen, The Netherlands

Leslie A. Enane, MD [58]

The Ryan White Center for Pediatric Infectious Disease and Global Health Indiana University School of Medicine Indianapolis, Indiana

Brian Fisher, DO, MSCE, MPH [9]

Associate Professor Department of Pediatrics Perelman School of Medicine at the University of Pennsylvania Attending Physician Division of Infectious Diseases Children's Hospital of Philadelphia Philadelphia, Pennsylvania

Katherine E. Fleming-Dutra, MD [33]

Deputy Director, Office of Antibiotic Stewardship Division of Healthcare Quality Promotion Centers for Disease Control and Prevention Atlanta, Georgia

Todd A. Florin, MD, MSCE [36]

Associate Professor, Department of Pediatrics Northwestern University Feinberg School of Medicine Division of Emergency Medicine Ann and Robert H. Lurie Children's Hospital of Chicago Chicago, Illinois

Margherita Fontana, DDS, PhD [30]

Professor, Department of Cariology, Restorative Sciences, and Endodontics School of Dentistry University of Michigan Ann Arbor, Michigan

Patrick G. Gallagher, MD, FAAP [53]

Professor Department of Pediatrics, Pathology, and Genetics Division of Neonatology Yale University School of Medicine New Haven, Connecticut

Peter John Gill, MD, MSc, DPhil [34]

Division of Paediatric Medicine Department of Paediatrics The Hospital for Sick Children University of Toronto Toronto, Ontario, Canada

Jennifer E. Girotto, PharmD, BCPPS [8]

Associate Clinical Professor of Pharmacy Practice and Pediatrics University of Connecticut Schools of Pharmacy and Medicine Co-Director of Antimicrobial Stewardship Connecticut Children's Medical Center Hartford, Connecticut

Mark P. Gorman, MD [21]

Assistant Professor of Neurology Department of Neurology Harvard Medical School Assistant in Neurology and Director Pediatric Multiple Sclerosis and Related Disorders Program Director Pediatric Neuro-Immunology Program Children's Hospital Boston Boston, Massachusetts

Sarah R. Green, MD [46]

Fellow Section of Adolescent Medicine Department of Pediatrics University of Colorado School of Medicine Children's Hospital Colorado Aurora, Colorado

Margaret R. Hammerschlag, MD [23,24]

Professor of Pediatrics and Medicine Department of Pediatrics Division of Pediatric Infectious Diseases State University of New York Downstate Medical Center Brooklyn, New York

Benjamin Hanisch, MD [29]

Assistant Professor of Pediatrics George Washington University Children's National Health System Washington, District of Columbia

Marvin B. Harper, MD [19]

Associate Professor of Pediatrics Harvard Medical School Senior Associate in Medicine Infectious Diseases and Emergency Medicine Children's Hospital Boston Boston, Massachusetts

Erin O. Harvey, MD [13]

Instructor, Department of Pediatrics Northwestern University Feinberg School of Medicine Division of Hospital-Based Medicine Ann and Robert H. Lurie Children's Hospital of Chicago Chicago, Illinois

Adam L. Hersh, MD, PhD [33]

Associate Professor, Department of Pediatrics University of Utah School of Medicine Salt Lake City, Utah

Richard L. Hodinka, PhD, F(AAM) [2]

Emeritus Professor, Department of Pathology & Laboratory Medicine Perelman School of Medicine at the University of Pennsylvania Chair, Department of Biomedical Sciences Professor of Microbiology University of South Carolina School of Medicine Greenville & Greenville Health System Greenville, South Carolina

Houman Homayoun, MD [22]

Assistant Professor, Department of Neurology University of Pittsburgh Pittsburgh, Pennsylvania

Thomas A. Hooven, MD [54]

Assistant Professor of Pediatrics Vagelos College of Physicians & Surgeons Columbia University New York, New York

Virginia Hsu, MD [13]

Instructor, Department of Pediatrics Northwestern University Feinberg School of Medicine Division of Hospital-Based Medicine Ann and Robert H. Lurie Children's Hospital of Chicago Chicago, Illinois

Mary Anne Jackson, MD [64]

Professor, Department of Pediatrics Interim Dean University of Missouri–Kansas City School of Medicine Division of Pediatric Infectious Diseases Children's Mercy Hospital and Clinics Kansas City, Missouri

Samay Jain, MD [22]

Assistant Professor of Neurology Department of Neurology Clinical Director Movement Disorders Division University of Pittsburgh Pittsburgh, Pennsylvania

John L. Jefferies, MD, MPH [41]

Professor, Department of Pediatrics University of Cincinnati College of Medicine Director, Advanced Heart Failure and Cardiomyopathy The Heart Institute Professor, Division of Human Genetics Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Anne K. Jensen, MD [26]

Assistant Professor of Clinical Ophthalmology Perelman School of Medicine at the University of Pennsylvania Philadelphia, Pennsylvania

Yemisi Jones, MD [29]

Assistant Professor Department of Pediatrics University of Cincinnati College of Medicine Division of Hospital Medicine Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Nadeem Y. Karimbux, DMD, MMSc [30]

Professor of Periodontology Associate Dean of Academic Affairs Tufts University School of Dental Medicine Boston, Massachusetts

Matthew S. Kelly, MD, MPH [56]

Assistant Professor, Department of Pediatrics Associate Fellowship Program Director, Pediatric Infectious Diseases Division of Pediatric Infectious Diseases Duke University Medical Center Durham, North Carolina

Rebecca S. Kidd, MD [31]

Assistant Professor Division of Emergency Medicine Department of Pediatrics Vanderbilt University Medical Center Nashville, Tennessee

David M. Kim, DDS, DMSc [30]

Associate Professor of Oral Medicine, Infection, and Immunity Director of the Postgraduate Program in Periodontology and Continuing Education Harvard School of Medicine Boston, Massachusetts

David W. Kimberlin, MD [10]

Professor, Department of Pediatrics Co-Director, Division of Pediatric Infectious Diseases The University of Alabama at Birmingham Birmingham, Alabama

Eimear Kitt, MD [59]

Attending Physician Division of Pediatric Infectious Diseases Children's Hospital of Philadelphia Philadelphia, Pennsylvania

Terry Klassen, MD, MSc [34]

Professor and Head Department of Pediatrics and Child Health University of Manitoba CEO and Scientific Director Children's Hospital Research Institute of Manitoba Winnipeg, Manitoba, Canada

William C. Koch, MD [66]

Associate Professor Department of Pediatrics Division of Infectious Diseases Children's Hospital of Richmond at Virginia Commonwealth University School of Medicine Richmond, Virginia

Larry K. Kociolek, MD, MSCI [5]

Assistant Professor, Department of Pediatrics Northwestern University, Feinberg School of Medicine Associate Medical Director of Infection Prevention and Control Ann and Robert H. Lurie Children's Hospital of Chicago Chicago, Illinois

Georgia Koltsida, MD, MSCE [38]

Pediatric Pulmonologist Agia Sofia Children's Hospital Athens, Greece

Matthew P. Kronman, MD, MSCE [48]

Associate Professor Department of Pediatrics Division of Infectious Diseases University of Washington at Seattle Children's Hospital Seattle, Washington

Angelle Desiree LaBeaud, MD, MS [69]

Associate Professor, Department of Pediatrics Division of Infectious Diseases Stanford University Stanford, California

Joanne M. Langley, MD, MSc [61]

Professor Departments of Pediatric and Community Health & Epidemiology Canadian Institutes of Health Research-GlaxoSmithKline Chair in Pediatric Vaccinology Dalhousie University and the Canadian Center for Vaccinology Halifax, Nova Scotia, Canada

Miriam K. Laufer, MD, MPH [70]

Professor, Department of Pediatrics Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore, Maryland

Melissa A. Lerman, MD, PhD [15]

Assistant Professor, Department of Pediatrics Perelman School of Medicine at the University of Pennsylvania Attending Physician, Division of Rheumatology Children's Hospital of Philadelphia Philadelphia, Pennsylvania

Jennifer S. Li, MD, MHS [40]

Professor of Pediatrics Division of Pediatric Cardiology Duke University Medical Center and Duke Clinical Research Institute Durham, North Carolina

Scott M. Lieberman, MD, PhD [15]

Assistant Professor of Pediatrics Carver College of Medicine Attending Physician in Pediatric Rheumatology Stead Family Children's Hospital University of Iowa Iowa City, Iowa

Eduardo A. Lindsay, MD [52]

Clinical Research Coordinator Musculoskeletal Infection Service Department of Orthopaedics Children's Medical Center of Dallas Dallas, Texas

Latania K. Logan, MD, MS [25]

Associate Professor, Department of Pediatrics Chief, Section of Infectious Diseases Rush University Medical Center Chicago, Illinois

Elizabeth D. Lowenthal, MD, MSCE [57]

Assistant Professor of Pediatrics and Epidemiology Division of General Pediatrics Global Health Center Children's Hospital of Philadelphia University of Pennsylvania, Perelman School of Medicine Philadelphia, Pennsylvania

Daniel Mallon, MD, MS-HPEd [11]

Assistant Professor Department of Pediatrics Division of Gastroenterology, Hepatology, and Nutrition Cincinnati Children's Hospital Medical Center University of Cincinnati College of Medicine Cincinnati, Ohio

Nisha T. Manickam, DO [71]

Chair UNC Rex Healthcare Attending, Medicine/Pediatric Infectious Diseases Raleigh Infectious Diseases, Inc. Raleigh, North Carolina

Ben J. Marais, MD [39]

Professor of Pediatrics and Infectious Diseases The Children's Hospital at Westmead University of Sydney Sydney, Australia

Beth C. Marshall, MD [66]

Associate Professor Department of Pediatrics Division of Infectious Diseases Children's Hospital of Richmond at Virginia Commonwealth University School of Medicine Richmond, Virginia

Alexander J. McAdam, MD, PhD [1]

Associate Professor Department of Pathology Harvard Medical School Medical Director of Infectious Diseases Laboratory and Vice-Chair Department of Laboratory Medicine Children's Hospital Boston Boston, Massachusetts

Jennifer L. McGuire, MD, MSCE [20]

Assistant Professor, Departments of Neurology and Pediatrics Perelman School of Medicine at the University of Pennsylvania Division of Child Neurology Children's Hospital of Philadelphia Philadelphia, Pennsylvania

Noah D. McKittrick, MD [69]

Clinical Associate Johns Hopkins University Department of Medicine Division of Infectious Diseases Bayview Medical Center Baltimore, Maryland

Lucas McWilliams, MD [49]

Fellow, Pediatric Emergency Medicine Northwestern University, Feinberg School of Medicine Ann and Robert H. Lurie Children's Hospital of Chicago Chicago, Illinois

Talene A. Metjian, PharmD [9]

Manager, Antimicrobial Stewardship Program Office of Safety and Medical Operations Children's Hospital of Philadelphia Philadelphia, Pennsylvania

Michelle L. Mitchell, MD [47]

Assistant Professor, Department of Pediatrics Division of Infectious Diseases Children's Hospital of Wisconsin Medical College of Wisconsin Milwaukee, Wisconsin

Pamela J. Murray, MD, MHP [47]

Professor and Vice Chair Department of Pediatrics Chief, Section of Adolescent Medicine West Virginia University School of Medicine Morgantown, West Virginia

Mark I. Neuman, MD, MPH [55]

Research Director, Division of Emergency Medicine Boston Children's Hospital Associate Professor of Pediatrics and Emergency Medicine Harvard Medical School Boston, Massachusetts

Roger Nicome, MD [18]

Assistant Professor of Pediatrics Department of Pediatrics Baylor College of Medicine Texas Children's Hospital Houston, Texas

Brian E. Nolan, MD [15]

Fellow, Division of Rheumatology Children's Hospital of Philadelphia Philadelphia, Pennsylvania

Ann-Christine Nyquist, MD, MSPH [4]

Professor, Department of Pediatrics Section of Infectious Diseases and Epidemiology University of Colorado School of Medicine Medical Director, Infection Prevention and Control and Occupational Health Children's Hospital Colorado Aurora, Colorado

Howard B. Panitch, MD [38]

Professor of Pediatrics Perelman School of Medicine at The University of Pennsylvania Director of Clinical Programs Division of Pulmonary Medicine The Children's Hospital of Philadelphia Philadelphia, Pennsylvania

Michelle W. Parker, MD [42]

Assistant Professor Department of Pediatrics University of Cincinnati College of Medicine Division of Hospital Medicine Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Mark S. Pasternack, MD [27]

Chief

Pediatric Infectious Disease Unit Massachusetts General Hospital for Children Associate Professor of Pediatrics Harvard Medical School Boston, Massachusetts

Nadja G. Peter, MD [46]

Associate Professor of Pediatrics Department of Pediatrics Drexel University College of Medicine Division of Adolescent Medicine St. Christopher's Hospital for Children Philadelphia, Pennsylvania

Claudette L. Poole, MD [10]

Fellow

Division of Pediatric Infectious Diseases University of Alabama Birmingham Birmingham, Alabama

Caroline Quach, MD, MSc [44]

Professor

Departments of Microbiology, Infectious Diseases, and Immunology and Pediatrics Faculty of Medicine, University of Montreal Centre hospitalier universitaire Sainte-Justine Montreal, Quebec, Canada

Ricardo Quiñonez, MD [18]

Associate Professor of Pediatrics Department of Pediatrics Baylor College of Medicine Texas Children's Hospital Houston, Texas

Tara M. Randis, MD, MS [54]

Assistant Professor of Pediatrics and Microbiology Departments of Pediatrics and Microbiology New York University School of Medicine New York, New York

Karen A. Ravin, MD, MS [28]

Clinical Assistant Professor of Pediatrics Sidney Kimmel Medical College of Thomas Jefferson University Philadelphia, Pennsylvania Chief, Division of Infectious Diseases Nemours-Alfred I. duPont Hospital for Children Wilmington, Delaware

Wolfgang Rennert, MD, DMSc, DTMTH, FAAP [57,58]

Residency Program Director Department of Pediatrics Georgetown University Medical Center Washington, District of Columbia

Katherine M. Richardson, MD [64]

Fellow Division of Pediatric Infectious Diseases Children's Mercy Hospital and Clinics Kansas City, Missouri

Jeffrey Riese, MD [35]

Assistant Professor Deparrment of Pediatrics Warren Alpert School of Medicine at Brown University Hospitalist Division of Hospital Medicine Hasbro Children's Hospital Providence, Rhode Island

Elizabeth Ristagno, MD, MS [75]

Senior Associate Consultant Division of Pediatric Infectious Diseases Mayo Clinic Rochester, Minnesota

Richard M. Rutstein, MD [56,57,58,59]

Associate Professor Division of General Pediatrics Perelman School of Medicine at the University of Pennsylvania Medical Director Special Immunology Service and Family Care Center Children's Hospital of Philadelphia Philadelphia, Pennsylvania

Joshua K. Schaffzin, MD, PhD [74]

Assistant Professor, Department of Pediatrics University of Cincinnati College of Medicine Director, Infection Prevention and Control Program Division of Infectious Diseases Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Amanda C. Schondelmeyer [6,7]

Assistant Professor Department of Pediatrics University of Cincinnati College of Medicine Division of Hospital Medicine Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Alan R. Schroeder, MD [45]

Clinical Associate Professor, Department of Pediatrics Research Director, Division of Pediatric Hospital Medicine Stanford University Stanford, California

Kara N. Shah, MD, PhD, FAAD, FAAP [17,62]

President Kenwood Dermatology Cincinnati, Ohio

Rahul K. Shah, MD, FAAP [32]

Professor, Departments of Otolaryngology and Pediatrics Vice President and Chief Quality and Safety Officer Children's National Medical Center George Washington University School of Medicine Washington, District of Columbia

Samir S. Shah, MD, MSCE [36,37]

Professor Department of Pediatrics University of Cincinnati College of Medicine Director and James M. Ewell Endowed Chair Division of Hospital Medicine Attending Physician Divisions of Hospital Medicine and Infectious Diseases Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Udayan K. Shah, MD [28,32]

Chief, Pediatric Otolaryngology Nemours–Alfred I. duPont Hospital for Children Wilmington, Delaware Professor, Department of Otolaryngology-Head & Neck Surgery and Department of Pediatrics Sidney Kimmel Medical College Thomas Jefferson University Philadelphia, Pennsylvania

Erin E. Shaughnessy, MD, MSHCM [73]

Associate Professor Department of Child Health University of Arizona College of Medicine Phoenix Chief, Division of Hospital Medicine Phoenix Children's Hospital Phoenix, Arizona

Tamara D. Simon, MD, MSPH [74]

Associate Professor Department of Pediatrics Division of Hospital Medicine and General Pediatrics University of Washington School of Medicine Seattle, Washington

Blair E. Simpson, MD [25]

Assistant Professor Department of Pediatrics University of Cincinnati College of Medicine Division of Hospital Medicine Cincinnati Children's Hospital and Medical Center Cincinnati, Ohio

Nalini Singh, MD, MPH [29]

Professor of Pediatrics, Global Health, and Epidemiology George Washington University Children's National Health System Washington, District of Columbia

Thomas J. Sitzman, MD, MPH [73]

Assistant Professor of Plastic Surgery Mayo Clinic Scottsdale Division of Plastic Surgery Phoenix Children's Hospital Phoenix, Arizona

Michael J. Smith, MD, MSCE [3]

Associate Professor Department of Pediatrics Division of Infectious Diseases Duke University Medical Center Durham, North Carolina

David M. Spiro, MD, MPH [31]

Medical Director, Vice President AllMed Healthcare Portland, Oregon Attending Physician, Pediatric Emergency Medicine Sunrise Children's Hospital Las Vegas, Nevada

Nivedita S. Srinivas, MD [45]

Clinical Assistant Professor, Pediatric Infectious Diseases Pediatric Hospital Medicine Stanford University Stanford, California

Mary Allen Staat, MD, MPH [72]

Professor, Department of Pediatrics University of Cincinnati College of Medicine Division of Infectious Diseases Director, International Adoption Center Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Andrew P. Steenhoff, MBBCH, DCH(UK), FCPaed(SA) [56,57,58,59]

Assistant Professor, Department of Pediatrics Division of Pediatric Infectious Diseases Perelman School of Medicine at the University of Pennsylvania Medical Director, Global Health Center Children's Hospital of Philadelphia Philadelphia, Pennsylvania

William J. Steinbach, MD [40]

Professor, Department of Pediatrics and Department of Molecular Genetics and Microbiology Chief, Division of Pediatric Infectious Diseases Director, Pediatric Immunocompromised Host Program Director, International Pediatric Fungal Network Duke University Medical Center Durham, North Carolina

Kathleen E. Sullivan, MD [63]

Professor of Pediatrics Division of Allergy and Immunology Children's Hospital of Philadelphia Perelman School of Medicine at the University of Pennsylvania Philadelphia, Pennsylvania

Tina Q. Tan, MD [25]

Associate Professor, Department of Pediatrics Northwestern University, Feinberg School of Medicine Pediatric Infectious Diseases Physician Department of Pediatrics Children's Memorial Hospital Chicago, Illinois

Tony Tarchichi, MD [16]

Assistant Professor, Department of Pediatrics University of Pittsburgh School of Medicine Children's Hospital of Pittsburgh Paul C. Gaffney Division of Pediatric Hospital Medicine Pittsburgh, Pennsylvania

Amy E. Taylor, MD [43]

Assistant Professor, Department of Pediatrics University of Cincinnati College of Medicine Division of Gastroenterology Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Joanna Thomson, MD, MPH [60]

Assistant Professor, Department of Pediatrics University of Cincinnati College of Medicine Division of Hospital Medicine Cincinnati Children's Hospital Medical Center Cincinnati, Ohio

Karina A. Top, MD, MS [61]

Associate Professor Departments of Pediatrics and Community Health & Epidemiology Dalhousie University IWK Health Centre Halifax, Nova Scotia, Canada

Adriana H. Tremoulet, MD, MAS [67]

Associate Professor, Department of Pediatrics Associate Director, Kawasaki Disease Research Center Division of Host-Microbe Systems and Therapeutics University of California, San Diego/Rady Children's Hospital San Diego, California

Louis Valiquette, MD, MSc [44]

Professor

Department of Microbiology and Infectious Diseases Faculty of Medicine and Health Sciences University of Sherbrooke Sherbrooke, Quebec, Canada

Jeroen C. H. van der Hilst, MD, PhD [65]

Associate Professor of Immune Pathology University of Hasselt Infectious Disease Specialist Department of Infectious Diseases and Immunity Jessa Hospital Hasselt, Belgium

Kishore Vellody, MD [16]

Associate Professor, Department of Pediatrics University of Pittsburgh School of Medicine Children's Hospital of Pittsburgh of UPMC Paul C. Gaffney Division of Pediatric Hospital Medicine Pittsburgh, Pennsylvania

Jeffrey L. Waugh, MD [12]

Assistant Professor of Pediatrics Director, Pediatric Movement Disorders Program The University of Texas Southwestern at Dallas Children's Medical Center of Dallas Dallas, Texas

Ivan Wilmot, MD [41]

Associate Professor Director, Pediatric Cardiology Fellowship Advanced Heart Failure & Transplant The Heart Institute Cincinnati Children's Hospital Medical Center University of Cincinnati College of Medicine Cincinnati, Ohio

Robert Bruce Wright, MD, FRCPC, FAAP [34]

Associate Professor, Department of Pediatrics University of Alberta Director, Division of Pediatric Emergency Medicine Edmonton, Alberta, Canada

Pablo Yagupsky, MD [51]

Professor of Pediatrics and Clinical Microbiology Ben-Gurion University of the Negev Beer-Sheva, Israel

Preface

Our understanding of infectious diseases has increased exponentially over the past few decades with invention of new diagnostic tests and identification of new pathogens and diseases. We also have the recognition of new syndromes caused by well-known pathogens and the resurgence of "old" diseases, once thought conquered. The complexity of children receiving medical care in both the outpatient and inpatient settings has also increased substantially. Conditions that once required initial (e.g., pyelonephritis) or prolonged (e.g., osteomyelitis) hospitalization are now managed primarily in the outpatient setting. The survival of infants born prematurely and those with chronic illnesses has improved through advances in medical technology and systems of care. Healthcare delivery has also evolved with far greater emphasis on both achieving better outcomes at lower cost and improving the experiences of our patients and their families. Consequently, the amount of knowledge required to manage even common childhood infections can sometimes feel mind boggling. This book was written in order to provide general and specialty child-health clinicians-generalists and specialists-a practical, reliable, and evidence-based resource to diagnose and treat commonly encountered pediatric infections in the inpatient and outpatient settings.

The revised edition begins by addressing practical aspects such as basics of the practice of infectious diseases, including information about clinical microbiology and virology laboratory tests, infection control in office and hospital settings, and important concepts in infectious diseases epidemiology. This latter chapter we hope will

provide the reader with insight into interpretation of contemporary clinical research. New to this edition are chapters on quality improvement and chapters on anti-infective agents, emphasizing the growing importance of rigorous assessment of our interventions and the need to maximize knowledge of the growing number of agents available for treatment of childhood infections. Additionally, as an increasingly vocal anti-vaccine movement threatens to undermine hard-won public health gains, the revised chapter on vaccines places greater emphasis on communication about vaccine safety and risk. The next section covers common signs and symptoms for which infections are often part of the differential diagnosis. Subsequent sections review infections by anatomic site with emphasis on providing practical guidance for diagnosis and management. The book addresses many special situations that fall outside the scope of organ systems such as perinatally acquired infections and care of children with human immunodeficiency virus infection. We also cover topics such as infections in children with atopic dermatitis or neurologic impairment and infections in internationally adopted children that often fall outside the scope of traditional textbooks.

In organizing this book, we strove to ensure that chapters were sufficiently detailed and thoroughly referenced while also adhering to our philosophy of providing practical management strategies. Our expert authors, to whom we are extremely grateful, succeeded in reaching this objective in a timely manner. We hope this book will serve as a daily infectious diseases consultant to the practicing pediatrician.

> Samir S. Shah Alex R. Kemper Adam J. Ratner

AADantibiotic-associated durrheaATMacute transverse myelitisAAOAmerican Academy of OtolaryngologyATSAmerican Thoracis SocietyAAPOSAmerican Academy of Pediatric OphthalinologyATVatzanavirAAPOSamerican Association for Pediatric OphthalinologyAUCarea under the (time-concertantion tr/C) curveABCacute bacterial conjunctivitisAUCarea under the (time-concertantion tr/C) curveACEacute bacterial conjunctivitisAUCarea under the (time-concertantion tr/C) curve, over time, represented as an area under the tif-curve, over time, represented as an area under the tif-curve, over time, represented as an area under the tif-curve, over time, terpresented as an area und	AACN	American Association of Critical Care Nurses	AT	ataxia telangiectasia
AAOAmerican Academy of PolarnysologyATSAmerican Thoracic SocietyAAPOSAmerican Asademy of Polartic OphthalmologyAUCarea under the (trine-concentration t/C) curveAAPOSand StrahsmusAUCarea under the (trine-concentration t/C) curveABCacute bacterial conjunctivitsAUCarea under the (triC) curve over the minimum inhibitory concentration (Ch 8; nto ind) drug exposure over MIC)ACEangiotensin-converting enzymeAUROCarea under the (triC) curve, over MIC)ACDAdvisory Committee on Immunization PracticesAUROCarea under receiver-operator characteristic curve MIC)ACDAdvisory Committee on Immunization PracticesAVMmailormationADPacute disseminated encephalomyelitisAVMmailormationADPacute facci diphosphateAZTzlovodineAFBacute facci diphosphateBALbronchoalveolar lavageAFBacute facci myelitisBCGbacil Calintei-Curve, over antifobuli testAGTantifologin testBCSABard Cartifice Polatric Pharmacy SpecialistAIIAAmerican Iterat AssociationBCYPbuffalo green monkey kidneyAIIRAAgency for Healtbarer Research and QualityBILboord-sin barrierAIIRAacute hematogenous osteomyelitisBGMbuffalo green monkey kidneyAIIRAacute instruction siolation roomBNPBi-type natirustic peptideAIIRAacute facci unbundeficrate syndromeBALbooly rasi indecAIIRAacute facciny instructi			ATM	-
AAPAmerican Association for PediatricsATVatzanavirAAPOSAmerican Association for Pediatric OphthalmologyAUCarea under the (time-concentration t/C) curve and StrabismusABCacute bacterial conjunctivitisAUC/AUCarea under the (UC) curve over the minimum inhibitory concentration (CA) strato fotal drug exposure over time, represented as an area under the t/C curve, over MIC)ACEacute bacterial conjunctivitisAURarea under the (UC) curve over the minimum inhibitory concentration (CA) strato fotal drug exposure over time, represented as an area under the t/C curve, over MIC)ACEAdvisory Committee on Immunization PracticesAUROarea under receiver-operator characteristic curveACEAdvisory Committee on Immunization PracticesAUROarea under receiver-operator characteristic curveADEMacute discentinated encephalomyellitisAVMAssessing Worldwide Antimicrobial ResistanceADFacute finated onyellitisBAIbronchoalveolar lavageAFBacid fast bacill(us)(i)BBBblood-brain barrierAFGacid fast bacill(us)(i)BCFPSBoard Certified Pediatric eparta-selective agarAHOacute haxeopronos ostomyellitisBCABurkholdwidar capacta-selective agarAHOacute haxeopronos ostomyellitisBCSbufforgeren monkey kidneyAIIRQAgency for Healthcare Research and QualityBITbufforgeren monkey kidneyAIRAacute haxeopronos ostomyellitisBCNbuffage areaALCacute haxeopronos distomy exportineBNIbody mass indexAI		American Academy of Otolaryngology		
AAPOSAmerican Association for Pediatric Ophthalmology and StrabismusAUC AUC/MICarea under the (<i>ifC</i>) curve over the minimum inhibitory concentration (<i>ifC</i>) is ratio of total drug exposure over time, represented as an area under the (<i>ifC</i>) curve, over MIC)ABCangitorsin-converting enzymeVUC/MICarea under the (<i>ifC</i>) curve over the minimum inhibitory concentration (<i>ifC</i>) is ratio of total drug exposure over time, represented as an area under the <i>IfC</i> curve, over MIC)ACPAdvisory Committee on Immunization PracticesAUROCarea under receiver-operator characteristic curve MIC)ADPactre disseminated encephalonyellitsAVMmaiformationAD-HESactre disseminated encephalonyellitsAVMAREAssessing Worldwide Antimicrobial Resistance EvaluationADPactre disseminated encephalonyellitsAZIZidovulineAERAdverse Event ReportingBALbronchoalveolar lavageAFMactie flaccid myelitisBCGbacifle Calimette-GuérinAFMactie flaccid myelitisBCPSbacard Carlitise Phatinacy SpecialistAIROactue flaccid myelitisBCYEbuffered charcoal-yeast extractAIROactue functions ostation fromBNPBitter curveAIROactue functions solution roomBNPBittype natiruter (peptideAIROactue function solution roomBNPBittype antiruter (peptideAIROactue function solution roomBNPBittype antiruter (peptideAIROactue function solution roomBNPBittype antiruter (peptideAIRO	AAP		ATV	·
and StrabismusAUC/MICarea under the (VC) cuve over the minimum inhibitoryABCacute bacterial conjunctivitisarea under the the C cuve, overACEangiotensin-converting enzymearea under receiver-operator characteristic curveACDAdvisory Committee on Immunization PracticesAUROCarea under receiver-operator characteristic curveACDGAmerican College of Obstetrics and GynecologyAVMmalformationADEMacute disseminated encephalomyelitisAWAmalformationADPacute disseminated encephalomyelitisAWAmalformationADPadenosine diphosphaleAZTzidovudineABRAdverse Event ReportingBALbronchoalveolar lavageAFBacid-fast bacill(us)(f)BBBblood-brain barrierAFMacute faccid myelitisBCGbacille Claimette-ColerinAFantigonBCPSBoard Certified Pediatric Pharmacy SpecialistAGTantigoloalin testBCSABurkholderia cepacia-selective agarAHOacute hematogenous ostomyelitisBGMKbuffied green monkey kidneyAHIRairborne infection isolation roomBNPB-type natirurcite peridedALIRacute lowar phytonicBRATbananas, rice, applesauce, toastALIRacute lowar phytonicBRATbananas, rice, applesauce, toastALIRacute homotogenostennyelifierBSPbiody curve areaALIRacute homotogenostennyelifierBSPbiody curve areaALIRacute homotogenostennyelifier <td< td=""><td>AAPOS</td><td>•</td><td>AUC</td><td>area under the (time–concentration t/C) curve</td></td<>	AAPOS	•	AUC	area under the (time–concentration t/C) curve
ARCacute haterial conjunctivitisconcentration (Closs ratio of total drug exposure over time, represented as an area under the <i>UC</i> curve, over MIC)ACIPAdvisory Committee on Immunization PracticesAUROCarea under receiver-operator characteristic curve over MIC)ADEMacute disseminated encephalomyelitisAVM nalformationAD-HIESautosomal dominant hyper-IgE syndromeEvaluationADPactor disseminated encephalomyelitisAWAREAssessing Worldwide Antimicrobial Resistance EvaluationADFactor disseminated encephalomyelitisAWAREAssessing Worldwide Antimicrobial Resistance EvaluationADFactor faccid myelitisBALbronchoalvocali rulavageAFBacid-fast bacill(us)(1)BBBblood-brain barrierAFMantifectid myelitisBCGbacille Claimette-GueriniAGTantigolin testBCSABurkholderia cepacia-selective agarAHAAmerican Heart AssociationBCYFSbuffered charcoal-yeast estractAHRQAgenç for Haelbhcare Research and QualityBIIborn-joint infectionAIR3acquired immunodeficiency syndromeBMIbodfmass indexALIactie barn perponiaferative syndromeBARbanas, rice, aplesuce, toastALIAautorimmune bymphoproliferative syndromeBSAbanas, rice, aplesuce, toastALIAauter lobar nephroniaBRATbanasi, rice, aplesuce, toastALIAauter lobar nephroniaBSLbiosafery levelALIAauter lobar nephroniaBSLbiosafery l			AUC/MIC	
ACIPAdvisory Committee on Immunization PracticesMIC)ACIPAdvisory Committee on Immunization PracticesAUROCarea under receiver-operator characteristic curveADEMacute disseminated encephalomyelitisAV MmalformationAD-HIESautosomal dominant hyper-1gk syndromeAV AREAssessing Worldwide Antimicrobial ResistanceADPactionaic diphosphateAZTzidovudineAERAdverse Event ReportingBALbronchoalvoolar lavageAFBacid-fast bacill(us)(1)BBBBlod-brain barrierAFMacute flaccid myelitisBCGbacille Calimete-GuérinAgantigenBCPSBoard Certifiel Patrancy SpecialistAGTantigolin testBCSABurkholderia cepacia-selective agarAHAAmerican Heart AssociationBCYSBurkholderia cepacia-selective agarAHAAmerican Heart AssociationBCYKbuffael charcoal-yeast extractAHRQAgency for Healbhare Research and QualityBIIbone-joint infectionALIRacute hymboycitic leukemiaBRATbanans, rice, applesauce, toastALINacute lobar nephroniaBRUEbifs, resolved, unexplained eventALINacute lobar nephroniaBSLbiosafety levelAMPAc-amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSLbiosafety levelANAantinuctar antibodyBIXbiosafety levelANAantinuctar antibodyBIXbiosafety levelANAantinuctar antibodyBIXbiosafety l	ABC	acute bacterial conjunctivitis		concentration (Ch 8; ratio of total drug exposure over
ACUPAdvisory Committee on Immunization PracticesAUROCarea under receiver-operator characteristic curveACOGAmerican College of Obstetrics and GynecologyAVMmaiformationADEMacute disseminated encephalomyelitisAWAREAssessing Worldwide Antimicrobial ResistanceADPadenosine diphosphateAZTzidovudineADPadenosine diphosphateAZTzidovudineABRAdverse Event ReportingBALbronchoalveolar lavageAFBacid-fast bacil(us)(i)BBBblood-brain barrierARacute flaccid myelitisBCGbould certified Pediatric Patrancy SpecialistAFTantigenBCPSBoard Certified Pediatric Patrancy SpecialistAFTantigicalBCSABurkholderin cepacia-selective agarAHAAmerican Heart AssociationBCYEbuffered charcoal-yeast extractAHRQAgency for Healthcare Research and QualityBJIbood-mass indexAIRairboren infection isolation roomBNTbedy mass indexALIacute lobar nephroniaBRATbanaas, rice, applesauce, toastALFautoimmune lymphoproliferative syndromeBSFbleody surface areaALIFautoimmune polymphorys-5-methyl-4-isoxazolapropionicBSTbloodstream infectionANAantinucear antibodyBSLbiosatery levelANAantinucear antibodyBSLbiosatery levelANAantinucear antibodyBCKbiosatery levelALIFautoimmune loyphoptiferative syndromeBA	ACE	angiotensin-converting enzyme		•
ACUSAnterian Codeg of Obsteriors and cynecologyAVMmalformationADEMactte disseminated encephalomyelitisAWAREAssessing Worldwide Antimicrobial ResistanceADPactro disseminated encephalomyelitisAWAREAssessing Worldwide Antimicrobial ResistanceADPactore fiscal diphosphateAZTzidovudineAERAdverse Event ReportingBALbronchoalveolar lavageAFBacid-fast bacill(us)(1)BBBblood-brain barrierAFMacute flaccid myelitisBCGbacille Calmette - GuérinAGTantiglobalin testBCSABurkholderia cepacia-selective agarAHAAmerican Heart AssociationBCYEbufferd charcoal-yeast extractAHOacute thematogenous osteomyelitisBGMKbuffalo green monkey kidneyAHRQAgency for Healthcare Research and QualityBJIbone-joint infectionALIRacute lobran cephroniaBNPB-type natruretic peptideALIacute lymphocytic leukemiaBRATbananas, rice, applesauce, toastALIacute lymphoproliferative syndromeBSLbloodstrean infectionAMPAantineutrophil youry-5-methyl-4-isoxazolapropiomic acidBSIbloodstrean infectionANPAantineutrophil yophasiCAcoronary artery syndromeANPAantinuclear antibodyBTXbloodstrean infectionANPAactute lowing antibodyBTXbloodstrean infectionANPAantinuclear antibodyBTXblood trean infectionANCabsolute	ACIP	Advisory Committee on Immunization Practices	AUDOC	
ADEMacute disseminated encephalomyclitisAWAREAssessing Worldwide Antimicrobial Resistance EvaluationADPautosomal dominant hyper-IgE syndromeAZTzioluvulineADPadenosine diphosphateAZTzioluvulineAERAdverse Event ReportingBALbronchoalveolar lavageAPBacid-fast bacill(us)(i)BBblood-brain barrierAFMacute flactid myelitisBCGbacille Calmette-GuirinAgantigenBCPPSBoard Certified Pediatric Pharmacy SpecialistAGTantiglobulin testBCSABurkholderia capcaia-selective agarAHAAmerican Heart AssociationBCYEbufferd charcoal-yeast extractAHOacute hematogenous osteomyelitisBGMKbuffalo green monkey kidneyAIIRaribrore infection isolation roomBNIbone-joint infectionAIIRairborne infection isolation roomBNIbone-joint infectionALIacute lobar nephroniaBRATbananas, rice, applesauce, toastALIacute lobar nephroniaBSEPbie alt export pumpAMPAa-anino-3-hydroxy-5-methyl-4-isoxazolapropiomicBSIbloodstream infectionANCabaine antinotransferaseBSDblood stream infectionANCabaine antinotransferaseBCNblood stream infectionANCabaine antinotransferaseBCNbloodstream infectionANPAantinetrophil countBSIbloodstream infectionANPAactue tottis mediaCAPconmunity-acquired <td>ACOG</td> <td>American College of Obstetrics and Gynecology</td> <td></td> <td></td>	ACOG	American College of Obstetrics and Gynecology		
ADFadrossmal dominant hyper-lgf: syndromeEvaluationADPadenosine diphosphateAZTzidovulineABRAdverse Event ReportingBALbronchoalveolar lavageABBacid-fast bacill(us)(i)BBBblood-brain barrierAFMacute flaccid myelitisBCGbacille CalmettGuérinAGTantigenBCSABurkholderia cepacia-selective agarAGTantigonin testBCSABurkholderia cepacia-selective agarAHAAmerican Heart AssociationBCYEbuffeed charcoal-yeast extractAHOacute hematogenous osteomyelitisGGMKbuffage enn morkey kidneyAIIRQAgency for Healthcare Research and QualityBIIbone-joint infectionAIIRaiborie infection isolation roomBNPB-type natriuretic peptideAIINacute lown phyropic liceulemiaBRATbuanasa, rice, applesauce, tostAIINacute lown rephroniaBRUEbrief, resolved, unexplained eventALTalanine aminotransferaseBSFPbile salt export pumpANAantinuclear antibodyBTXbolodstream infectionANCAantinuclear antibodyBTXbolod acute nitrogenANCAaute tothy hill cytoplasmic antibodyBTbiosafery levelANCAaute othy hill cytoplasmic antibodyCAAcornary artery aneurysmANCAantinuclear antibodyBTbiolod tream infectionANCAauteutority hill cytoplasmic antibodyCAPcorninuity-acquiredANCAauteutority	ADEM	acute disseminated encephalomyelitis		
ADPadenosine diphosphateAZTzidovudineAERAdverse Event ReportingBALbronchoadveolar lavageAFBacide-fast bacillus/(i)BBBblood-brain barrierAFMacute flaccid myelitisBCGbacille Calmette-GuérinAgantiglobulin testBCPPSBoard Certified Pediatric Pharmacy SpecialistAGTantiglobulin testBCPSBoard Certified Pediatric Pharmacy SpecialistAHAAmerican Heart AssociationBCYEbuffalo green monkey kidneyAHOacute hematogenous osteomyelitisBGMKbuffalo green monkey kidneyAHDSacquired immunodeficiency syndromeBMIbody mass indexAIDSacquired immunodeficiency syndromeBMIbody mass indexAILacute lobar nephroniaBRATbananas, rice, applesuace, toatALPSautoimmune lymphoproliferative syndromeBSAbody starsper trupALPautoimmune lymphoproliferative syndromeBSIbiosafety levelALPSautoimmune lymphoproliferative syndromeBSIbiosafety levelANAantinuctansferaseBSIbiosafety levelANAantinuctar affaseCAcornaurity acquiredANAautoitis ternaCAcornaurity acquiredANAautoitis mediaCAAcornaurity acquiredANAantinuctar affaseBSIbiosafety levelALPSautoitis ternaCAAcornaurity acquired pneumoniaANAantinuctar affaseCAPcornaurity acquired pneumonia	AD-HIES	autosomal dominant hyper-IgE syndrome	AWAKE	
AERAdverse Event ReportingBALbronchoalveolar lavageAFBacid-fast bacill(us)(i)BBBbloch-brain barrierAFMacute faccid myelitisBCGbacille Calmette-GuérinAgantigenBCPPSBoard Certified Pediatric Pharmacy SpecialistAGTantiglobulin testBCSABurkholderia cepacia-selective agarAHAAmerican Heart AssociationBCYEbiffed of charcoal-yeast extractAHGacute hematogenous osteomyelitisBGMKbone-joint infectionAHRQAgency for Healthcare Research and QualityBJIbone-joint infectionAHRacute lobar nephroniaBNPB-type natruretic peptideALLacute lobar nephroniaBNATbananas, rice, applesauce, toastALTalanine aninotransferaseBSAbody surface areaALTalanine aninotransferaseBSAblood surface areaANAantinclear antibodyBSIblood ure nitrogenANCAantinuclear antibodyCAcommunity-acquired neuroniaANCAautoimune plyphopolisin cantibodyCAcommunity-acquired pneuroniaANCAautoimune plyphotorinopathy candidiasis ectodermal dystroph (dyplasia)CAPcommunity-acquired pneuroniaANCAautoimune polyphotorinopathy candidiasis ectodermal dystroph (dyplasia)CAPcommunity-acquired pneuroniaANCAantineutrophil cytoplasmic antibodyCARTcommunity-acquired pneuroniaANCAantineutrophil (dyplasia)CAPcommunity-acquired pneuronia <tr< td=""><td>ADP</td><td>adenosine diphosphate</td><td>AZT</td><td></td></tr<>	ADP	adenosine diphosphate	AZT	
AFBacide fast bacill(us)(i)BBBblood-brain barrierAFMacute flaccid myelitisBCGbcille Calmette-GuérinAgantigenBCPPSBoard Certified Pediatric Pharmacy SpecialistAGTantiglobulin testBCSABurkholderia espacia-selective agarAHAAmerican Heart AssociationBCYEbufferd charcoal-yeast extractAHOacute hematogenous osteomyelitisBGMKbuffagreen monkey kidneyAIDSacquired immunodeficiency syndromeBMIbody mass indexAITRairborne infection isolation roomBNPB-type natriuretic peptideALLacute lymphocytic leukemiaBRATbananas, rice, applesauce, toastALNacute lobar nephroniaBRUEbrief, resolved, unexplained eventALTalanine aminotransferaseBSEPbile salt export pumpANPAcramino-3-hydroxy-5-methyl-4-isoxazolapropiomicBSIbiody surface areaANAantinuclear antibodyBTXbotulinum toxinANCAantinuertopplasmic antibodyBTXbotulinum toxinANCAantinuertopplasmic antibodyCAAcommunity-acquiredANCAacute otitis mediaCAAcommunity-acquiredANCAacute otitis mediaCAPcommunity-acquiredANCAantineurophylasnic antibodyCAPcommunity-acquired perumoniaANCAantineurophylasnic antibodyCAPcommunity-acquired perumoniaANCAantineurophylasnic antibodyCAPcommunity-acquired perumonia	AER	Adverse Event Reporting		
APMacute flaccid myelitisBCGbacille Calmette-GuérinAgantigonBCCPPSBoard Certified Pediatric Pharmacy SpecialistAGTantiglobulin testBCCABurkholderia cepacia-selective agarAHAAmerican Heart AssociationBCYEbuffered charcoal-yeast extractAHOacute hematogenous osteomyelitisBGMKbuffalo green monkey kidneyAHRQAgency for Healthcare Research and QualityBJIbone-joint infectionAIDSacquired immunodeficiency syndromeBMIbody mass indexALIairborne infection isolation roomBNPB-pen natriurcic peptideALIacute lobar nephroniaBRATbananas, rice, applesauce, toastALTalanine aminotransferaseBSEPbile salt export pumpALTalaniane aminotransferaseBSEPbile salt export pumpANAantinuclear antibodyBTXboodstream infectionANCantinuclear antibodyBTXbolod urea nitrogenANCacute oitis externaCAAcornumity-acquired pneumoniaANCacute oitis mediaCAPcornumity-acquired pneumoniaAPECEDacute oitis mediaCAPScornumity-acquired pneumoniaAPECEDAssociation for ProfessionalsCAPScornumity-acquired pneumoniaAPECEDAssociation for Professional Society of the Abuse of ChildrenCDIContornal differentiation 4APECAmerican Rofessinal Society of the Abuse of ChildrenCDIContornal differentiation 4APECA	AFB	acid-fast bacill(us)(i)		C C
AgantigenBCPPSBoard Certified Pediatric Pharmacy SpecialistAGTantiglobulin testBCSABurkholderia cepacia-selective agarAHAAmerican Heart AssociationBCYEBufferd charcoal-yeast extractAHOacute hematogenous osteomyelitisBGMKbuffalo green monkey kidneyAHRQAgency for Healthcare Research and QualityBITbone-jonit infectionAIDSacquired immunodeficiency syndromeBMIbody mass indexAIIRairborne infection isolation roomBNPB-type natriuretic peptideALLacute lobar nephroniaBRUEbrief, resolved, unexplained eventALPSautoimmune lymphoptiferative syndromeBSAbody surface areaALTalanine aminotransferaseBSEPbile salt export pumpAMPAa-amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIbloodstream infectionANCAantinuclear antibodyBTXbody munity-acquiredANCAantinuclear antibodyBTNblood urea nitrogenANCAacute oitis externaCAcommunity-acquired pneumoniaANCAacute oitis externaCAcommunity-acquired pneumoniaANCAacute oitis mediaCAPScommunity-acquired pneumoniaANCAacute oitis mediaCAPScommunity-acquired pneumoniaANCAacute oitis mediaCAPScommunity-acquired pneumoniaANCAacute oitis mediaCAPScommunity-acquired pneumoniaANCAacute oitis mediaCAPScommunity-acqui	AFM	acute flaccid myelitis		
AGTantiglobulin testBCSABurkholderia cepacia-selective agarAHAAmerican Heart AssociationBCYEbuffered charcoal-yeast extractAHOacute hematogenous osteomyelitisBGMKbuffalo green monkey kidneyAHD2Agency for Healthcare Research and QualityBJIbone-joint infectionAID3acquired immunodeficiency syndromeBMIbody mass indexAIR4airborne infection isolation roomBNPB-type natriuretic peptideALLacute lymphocytic leukemiaBRATbananas, rice, applesauce, toastALNacute lobar nephroniaBSLbrief, resolved, unexplained eventALT5autoimmune lymphoproliferative syndromeBSLbile salt export pumpALTalanine aminotransferaseBSEPbile salt export pumpAMPAa-amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIblood urean infectionANCabsolute neutrophil countBUNbolod urean introgenANCAantineutrophil cytoplasmic antibodyCAcommunity-acquiredAOEacute ottiis externaCAPcommunity-acquired pneumoniaAPECEDautoimmune polyendocrinopathy candidiasisCAPcommunity-acquired pneumoniaAPECEDautoit mediaCARTcombination antiretroviral therapyAPICAssociation for ProfessionalsCARTcombination antiretroviral therapyAPICAssociation for professionalsCARTcombination antiretroviral therapyAPICAssociation for professionalsCARTcombina	Ag	antigen		
AHAAmerican Heart AssociationBCYEbuffered charcoal-yeast extractAHOacute hematogenous osteomyelitisBGMKbuffalo green monkey kidneyAHRQAgency for Healthcare Research and QualityBJIbone-joint infectionAIDSacquired immunodeficiency syndromeBMIbone-joint infectionAIIRairborne infection isolation roomBNPB-type natriuretic peptideALLacute lymphocytic leukemiaBRATbananas, rice, applesauce, toastALNacute lobar nephroniaBRUEbrief, resolved, unexplained eventALPSautoimmune lymphoproliferative syndromeBSAbody surface areaALTalanine aminotransferaseBSEPbile salt export pumpAMPAa-amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIbloodstream infection acidANAantinuclear antibodyBTXbotulinum toxinANCAantinuctorant antibodyBTXbotulinum toxinANCAacute oitiis externaCAAcoronary aftery aneurysmAORacute oitiis externaCAPcommunity-acquiredAPECEDautoimmune polyendocrinopathy candidiasisCAPScrypyrin-associated periodic syndromeAPICAssociation for ProfessionalsCARTcombination antiretroviral therapyAPICAssociation for professional Society of the Abuse of ChildrenCDDCCenters for Disease Control and PreventionARFacute oftik refererCD4cluster of differentiation 4ARRabsolute risk reductionCD1	AGT	antiglobulin test		• •
AHOacute hematogenous osteomyelitisBGMKbuffalo green monkey kidneyAHRQAgency for Healthcare Research and QualityBJIbone-joint infectionAIDSacquired immunodeficiency syndromeBMIbody mass indexAIIRairborne infection isolation roomBNPB-type natriuretic peptideALLacute lymphocytic leukemiaBRATbanans, rice, applesauce, toastALNacute lobar nephroniaBRUEbrief, resolved, unexplained eventALPSautoimmune lymphoproliferative syndromeBSAbody surface areaALTalanine aminotransferaseBSEPbile salt export pumpAMPAc-amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIbiloodstream infectionANAantinuclear antibodyBTXbotulinum toxinANCAantineutrophil countBUNblood urea nitrogenANCAacute ottiis externaCAAcoronary artery aneurysmAOEacute ottiis mediaCAPcommunity-acquiredAOEacute ottiis mediaCAPcommunity-acquired pneumoniaAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPEcomplete blood countAPICAssociation for ProfessionalsCAPEcomplete blood countAPICAssociation for ProfessionalsCAPEcomplete blood countAPICAssociation for ProfessionalsCAPEcomplete blood countAPICAssociation for Professional Society of the Abuse of in Infection ControlCCCcenters for Dis	AHA	American Heart Association		
AHRQAgency for Healthcare Research and QualityBJIbone-joint infectionAIDSacquired immunodeficiency syndromeBMIbody mass indexAIIRairborne infection isolation roomBNPB-type natriuretic peptideALLacute lymphocytic leukemiaBRATbananas, rice, applesauce, toastALNacute lobar nephroniaBRUEbrief, resolved, unexplained eventALPSautoimmune lymphoproliferative syndromeBSAbody surface areaALTalanine aminotransferaseBSEPbile salt export pumpAMPAc-amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIbloodstream infectionANAantinuclear antibodyBTXbotulinum toxinANCAantinuclear antibodyBTXbotulinum toxinANCAantineutrophil cytoplasmic antibodyCAcommunity-acquiredAOMacute otitis externaCAPcommunity-acquired pneumoniaAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPScryopyrin-associated periodic syndromeAPICAssociation for ProfessionalsCARTcombination antiretroviral therapyAPSACAmerican Professional Society of the Abuse of ChildrenCBDICancer and Blood Disease InstituteAPSACAmerican Professional Society of the Abuse of ChildrenCDRCandida drug resistanceAPSACAmerican Professional Society of the Abuse of ChildrenCDRCandida drug resistanceARFabsolute risk reductionCDIClostridium dificile	АНО	acute hematogenous osteomyelitis		-
AIDSacquired immunodeficiency syndromeBMIbody mass indexAIIRairborne infection isolation roomBNPB-type natriuretic peptideALLacute lymphocytic leukemiaBRATbananas, rice, applesauce, toastALNacute lobar nephroniaBRUEbrief, resolved, unexplained eventALPSautoimmune lymphoproliferative syndromeBSAbody surface areaALTalanine aminotransferaseBSEbile salt export pumpAMPAc-amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIbiloodstream infectionANAantinuclear antibodyBSIbiloodstream infectionANCAantinuclear antibodyBTXbotulinum toxinANCAantineutrophil countBTXbotulinum toxinANCAantineutrophil cytoplasmic antibodyCAcommunity-acquiredAOMacute otitis externaCAAcommunity-acquired pneumoniaAOEacute otitis mediaCAPEcryopyrin-associated periodic syndromeAPICCAssociation for ProfessionalsCARTcombination antiretroviral therapyAPICAmerican Professional Society of the Abuse of ChildrenCBDICancer and Blood Disease InstituteARFabsolute returnatif feverCD4cluster of differentiation 4ARFabsolute rik reductionCD1Closter of differentiation 4APICAmerican Professional Society of the Abuse of ChildrenCDCCenters of Disease Control and PreventionARFabsolute rik reductionCD1Closter of diffe	AHRQ	Agency for Healthcare Research and Quality	BJI	
AIIRairborne infection isolation roomBNPB-type natriuretic peptideALLacute lymphocytic leukemiaBRATbananas, rice, applesauce, toastALNacute lobar nephroniaBRUEbrief, resolved, unexplained eventALPSautoimmune lymphoproliferative syndromeBSAbody surface areaALTalanine aminotransferaseBSEPbile salt export pumpAMPAa-mino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIbloodstream infectionANAantinuclear antibodyBTXblood urea nitrogenANCabsolute neutrophil countBTXblood urea nitrogenANCAantineutrophil cytoplasmic antibodyCAcommunity-acquiredAOEacute otitis setternaCAAcoronary artery aneurysmAOBacute otitis mediaCAPcommunity-acquired pneumoniaAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPScryopyrin-associated periodic syndromeAPICAssociation for Professionals in Infection ControlCBCcomplete blood countARFacute rhumatic feverCD4cluster of differentiation 4ARRabsolute risk reductionCD1Clostridium difficile infectionARFacute risk reductionCD1Clostridium difficile infectionARFacute risk reductionCD1Clostridium difficile infectionARFacute risk reductionCD1Clostridium difficile infectionARFacute risk reductionCD1Clostridium difficile infec	AIDS	acquired immunodeficiency syndrome		
ALLacute lymphocytic leukemiaBRATbananas, rice, applesauce, toastALNacute lobar nephroniaBRUEbrief, resolved, unexplained eventALPSautoimmune lymphoproliferative syndromeBSAbody surface areaALTalanine aminotransferaseBSEPbile salt export pumpAMPAc-amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIbloodstream infectionANAantinuclear antibodyBSLbiosafety levelANCabsolute neutrophil countBUNblood urea nitrogenANCAantineutrophil cytoplasmic antibodyCAcommunity-acquiredAOEacute otitis externaCAAcornany artery aneurysmAOEacute otitis mediaCAPcommunity-acquired pneumoniaAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPScryopyrin-associated periodic syndromeAPICAssociation for Professionals in Infection ControlCBCcomplete blood countARFacute rheumatic feverCD4cluster of differentiation 4ARRabsolute risk reductionCD1Clostridium difficile infectionARFacute rheumatic feverCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneARFantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneARFatter theumatic feverCDRCandida drug resistanceARF <td>AIIR</td> <td>airborne infection isolation room</td> <td>BNP</td> <td></td>	AIIR	airborne infection isolation room	BNP	
ALNacute lobar nephroniaBRUEbrief, resolved, unexplained eventALPSautoimmune lymphoproliferative syndromeBSAbody surface areaALTalanine aminotransferaseBSEPbile salt export pumpAMPA α -amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIbloodstream infectionANAantinuclear antibodyBSIbiosafety levelANCabsolute neutrophil countBTXbotulinum toxinANCAantineutrophil cytoplasmic antibodyCAcommunity-acquiredAOEacute otitis externaCAAcommunity-acquired pneumoniaAOMacute otitis mediaCAPcommunity-acquired pneumoniaAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPScryopyrin-associated periodic syndromeAPICAssociation for Professionals in Infection ControlCBDICancer and Blood Disease InstituteAPICAmerican Professional Society of the Abuse of ChildrenCDCCenters for Disease Control and PreventionARFacute rheumatic feverCD4cluster of differentiation 4ARRabsolute risk reductionCDI <i>Clostridium difficile</i> infectionARFacute risk reductionCDR <i>Candida</i> drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneARFacute risk reductionCDR <i>Candida</i> drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantisreptolysin OC	ALL	acute lymphocytic leukemia	BRAT	
ALPSautoimmune lymphoproliferative syndromeBSAbody surface areaALTalanine aminotransferaseBSEPbile salt export pumpAMPAa-amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIbloodstream infectionANAantinuclear antibodyBSLbiosafety levelANCabsolute neutrophil countBTXbotulinum toxinANCantineutrophil cytoplasmic antibodyBUNblood urea nitrogenAOEacute otitis externaCAcommunity-acquiredAOMacute otitis mediaCAPcommunity-acquired pneumoniaAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPcommunity-acquired pneumoniaAPICAssociation for Professionals in Infection ControlCBCcomplete blood countARFacute rheumatic feverCD4cluster of differentiation 4ARRabsolute risk reductionCD1Clostridium difficile infectionARFacute rheumatic feverCD2Conformité EuropéenneARFAssolute risk reductionCD1Clostridium difficile infectionARFAbsolute risk reductionCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantistreptolysin OCDRCandida drug resistance	ALN	acute lobar nephronia	BRUE	
ALTalanine aminotransferaseBSEPbile salt export pumpAMPA α -amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIbloodstream infectionANAantinuclear antibodyBSLbiosafety levelANAantinuctear antibodyBTXbotulinum toxinANCabsolute neutrophil countBUNblood urea nitrogenANCAantineutrophil cytoplasmic antibodyCAcommunity-acquiredANCAacute ottis externaCAAcoronary artery aneurysmAOMacute ottis mediaCAPcommunity-acquired pneumoniaAPECEDautoimmune polyendocrinopathy candidiasis catodrmal dystrophy (dysplasia)CAPScryopyrin-associated periodic syndromeAPICAssociation for Professionals in Infection ControlCBCcomplete blood countAPSACAmerican Professional Society of the Abuse of ChildrenCBDICancer and Blood Disease InstituteARFabsolute risk reductionCDIClostridium difficile infectionARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantiretroviral therapyCDRCandida drug resistance	ALPS	autoimmune lymphoproliferative syndrome	BSA	_
AMPAa-amino-3-hydroxy-5-methyl-4-isoxazolapropiomic acidBSIbloodstream infectionANAantinuclear antibodyBSLbiosafety levelANCabsolute neutrophil countBUNblood urea nitrogenANCAantineutrophil cytoplasmic antibodyCAcommunity-acquiredANCacute otitis externaCAAcoronary artery aneurysmAOEacute otitis mediaCAPcommunity-acquired pneumoniaAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPScryopyrin-associated periodic syndromeAPICAssociation for Professionals in Infection ControlCBCcomplete blood countAPSACAmerican Professional Society of the Abuse of ChildrenCDICancer and Blood Disease InstituteARFacute rheumatic feverCD4cluster of differentiation 4ARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASMAmerican Society for MicrobiologyCEConformité EuropéenneASMAmerican Society for MicrobiologyCECandida Response Network	ALT	alanine aminotransferase	BSEP	
ANAantinuclear antibodyBSLbiosafety levelANCabsolute neutrophil countBTXbotulinum toxinANCAantineutrophil cytoplasmic antibodyBUNblood urea nitrogenANCAantineutrophil cytoplasmic antibodyCAcommunity-acquiredAOEacute otitis externaCAAcoronary artery aneurysmAOMacute otitis mediaCAPcommunity-acquired pneumoniaAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPScryopyrin-associated periodic syndromeAPICAssociation for Professionals in Infection ControlCBCcomplete blood countAPSACAmerican Professional Society of the Abuse of ChildrenCDCCenters for Disease Control and PreventionARFacute rheumatic feverCD4cluster of differentiation 4ARRabsolute risk reductionCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASMantiretroviral therapyCDRCandida drug resistanceASMantiretrolysin OCERNChicago Ebola Response Network	AMPA		BSI	
ANCabsolute neutrophil countBTXbotulinum toxinANCAantineutrophil cytoplasmic antibodyBUNblood urea nitrogenAOEacute otitis externaCAcommunity-acquiredAOMacute otitis mediaCAAcoronary artery aneurysmAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPcommunity-acquired pneumoniaAPICAssociation for Professionals in Infection ControlCARTcombination antiretroviral therapyAPSACAmerican Professional Society of the Abuse of ChildrenCBDICancer and Blood Disease InstituteARFacute rikuratic feverCD4cluster of differentiation 4ARRabsolute risk reductionCD1Clostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASSOantistreptolysin OCEConformité EuropéenneASOantistreptolysin OCERNChicago Ebola Response Network	A NT A		BSL	biosafety level
ANCAantineutrophil cytoplasmic antibodyBUNblood urea nitrogenAOEacute otitis externaCAcommunity-acquiredAOMacute otitis mediaCAAcoronary artery aneurysmAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPcommunity-acquired pneumoniaAPICAssociation for Professionals in Infection ControlCARTcombination antiretroviral therapyAPSACAmerican Professional Society of the Abuse of ChildrenCBDICancer and Blood Disease InstituteARFacute rheumatic feverCD4cluster of differentiation 4ARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantistreptolysin OCERNChicago Ebola Response Network		•	BTX	botulinum toxin
AOEacute otitis externaCAcommunity-acquiredAOMacute otitis mediaCAAcoronary artery aneurysmAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPcommunity-acquired pneumoniaAPICAssociation for Professionals in Infection ControlCARTcombination antiretroviral therapyAPSACAmerican Professional Society of the Abuse of ChildrenCBDICancer and Blood Disease InstituteARFacute rheumatic feverCD4cluster of differentiation 4ARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantistreptolysin OCERNChicago Ebola Response Network		-	BUN	blood urea nitrogen
AOMacute otitis mediaCAAcoronary artery aneurysmAPECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPcommunity-acquired pneumoniaAPICAssociation for Professionals in Infection ControlCARTcombination antiretroviral therapyAPSACAmerican Professional Society of the Abuse of ChildrenCBDICancer and Blood Disease InstituteARFacute rheumatic feverCD4cluster of differentiation 4ARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASDantistreptolysin OCERNChicago Ebola Response Network			CA	community-acquired
APECEDautoimmune polyendocrinopathy candidiasis ectodermal dystrophy (dysplasia)CAPcommunity-acquired pneumoniaAPICAssociation for Professionals in Infection ControlCAPScryopyrin-associated periodic syndromeAPICAssociation for Professionals in Infection ControlCBCcombination antiretroviral therapyAPSACAmerican Professional Society of the Abuse of ChildrenCBDICancer and Blood Disease InstituteARFacute rheumatic feverCDCCenters for Disease Control and PreventionARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantistreptolysin OCERNChicago Ebola Response Network			CAA	coronary artery aneurysm
ectodermal dystrophy (dysplasia)CAPScryopyrin-associated periodic syndromeAPICAssociation for Professionals in Infection ControlCARTcombination antiretroviral therapyAPSACAmerican Professional Society of the Abuse of ChildrenCBDICancer and Blood Disease InstituteARFacute rheumatic feverCDCCenters for Disease Control and PreventionARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantistreptolysin OCERNChicago Ebola Response Network			CAP	community-acquired pneumonia
APICAssociation for Professionals in Infection ControlCARTcombination antiretroviral therapyAPSACAmerican Professional Society of the Abuse of ChildrenCBDICancer and Blood Disease InstituteARFacute rheumatic feverCDCCenters for Disease Control and PreventionARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantistreptolysin OCERNChicago Ebola Response Network	AFECED		CAPS	cryopyrin-associated periodic syndrome
in Infection ControlCBCcomplete blood countAPSACAmerican Professional Society of the Abuse of ChildrenCBDICancer and Blood Disease InstituteARFacute rheumatic feverCD4Cluster of differentiation 4ARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantistreptolysin OCERNChicago Ebola Response Network	APIC		CART	combination antiretroviral therapy
ChildrenCDCCenters for Disease Control and PreventionARFacute rheumatic feverCD4cluster of differentiation 4ARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantistreptolysin OCERNChicago Ebola Response Network			CBC	complete blood count
ARFacute rheumatic feverCD4cluster of differentiation 4ARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantistreptolysin OCERNChicago Ebola Response Network	APSAC	American Professional Society of the Abuse of	CBDI	Cancer and Blood Disease Institute
ARRabsolute risk reductionCD4Clasticl of unrefermation 4ARRabsolute risk reductionCDIClostridium difficile infectionARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantistreptolysin OCERNChicago Ebola Response Network			CDC	Centers for Disease Control and Prevention
ARTantiretroviral therapyCDRCandida drug resistanceASMAmerican Society for MicrobiologyCEConformité EuropéenneASOantistreptolysin OCERNChicago Ebola Response Network			CD4	cluster of differentiation 4
ASM American Society for Microbiology CE Conformité Européenne ASO antistreptolysin O CERN Chicago Ebola Response Network			CDI	Clostridium difficile infection
ASO antistreptolysin O CERN Chicago Ebola Response Network			CDR	Candida drug resistance
			CE	Conformité Européenne
AST aspartate aminotransferase CF cystic fibrosis			CERN	Chicago Ebola Response Network
	AST	aspartate aminotransferase	CF	cystic fibrosis

XXII	Abbreviations		
CFU	colony-forming unit	DGI	disseminated gonococcal infection
CGD	chronic granulomatous disease	DHHS	Department of Health and Human Services
CHD	congenital heart disease	DIC	disseminated intravascular coagulation
CHG	chlorhexidine gluconate	DIH	drug-induced hypersensitivity
CHIME	Collaborative Home Infant	DIRA	deficiency of IL (interleukin)-1 receptor agonist
	Monitoring Evaluation	DNA	deoxyribonucleic acid
CI	confidence interval	DOCK8	dedicator of cytokinesis 8 gene
CIA	chemiluminescence immunoassay	DOT	directly observed therapy
CIAIS	cold-induced autoinflammatory syndrome	DRESS	drug reaction with eosinophilia and systemic
CIC	Certified Inpatient Coder		symptoms
CINCA	chronic infantile neurologic cutaneous-articular	DRV	darunavir
CI ADCI	(syndrome)	ds	double strength (in prescriptions)
CLABSI	central line–associated bloodstream infection	DSM	Diagnostic and Statistical Manual
CLIA	Clinical Laboratory Improvement Amendments	DTaP	diphtheria-tetanus-acellular
CLSI	Clinical and Laboratory Standards Institute	DEC	pertussis (vaccine)
CMP	chemistry panel	DTG	dolutegravir
CMR	cardiovascular magnetic resonance	d-TGA	<i>dextro</i> -transposition of the great arteries
CMV	cytomegalovirus	DWI	diffusion-weighted imaging
CNS	central nervous system	EAC	external auditory canal
CoNS	coagulase-negative <i>Staphylococcus</i>	EACTS	European Association of Cardio-Thoracic Surgery
CoV	coronavirus	EANM	European Association of Nuclear Medicine
CPAM	congenital pulmonary airway malformation	EBNA	Epstein–Barr nuclear antigen
CPE	cytopathic effect	EBUS-NA	endobronchial ultrasound-guided
CPIC	Clinical Pharmacogenetics Implementation Consortium	LD05-IVI	needle aspiration
СРК	creatine phosphokinase	EBV	Epstein–Barr virus
CPS	Canadian Paediatric Society	ED	emergency department
CRBSI	catheter-related bloodstream infection	EDTA	ethylenediamine tetra (acetic acid)
CRE	carbapenem-resistant enterobacteriaceae	EEE	eastern equine encephalitis
CRF	circulating recombinant form	EES	erythromycin ethylsuccinate
CRMO	chronic recurrent multifocal osteomyelitis	EFV	efavirenz
CRMP	collapsing-responsive mediator protein	EGA	estimated gestational age
CRP	C-reactive protein	EHEC	enterohemorrhagic Escherichia coli
CRS	congenital rubella syndrome	EIA	enzyme immunoassay
CSF	cerebrospinal fluid	ELF	epithelial lung fluid
CST	cavernous sinus thrombosis	ELISA	enzyme-linked immunosorbent assay
CT	computed tomography	EKG	electrocardiogram
CTBA	cystine tellurite blood agar	EMLA	eutectic mixture of local anesthetics
CVC	central venous catheter	EMR	electronic medical record
CVID	common variable immunodeficiency	EMTCT	elimination of mother-to-child
CXR	chest X-ray		transmission (of HIV)
CZS	congenital Zika syndrome	EPA	Environmental Protection Agency (US)
DAMP	damage-associated molecular pattern	ERCP	endoscopic retrograde cholangiopancreatography
DAT	direct antiglobulin test	ESBL	extended-spectrum β-lactamase
DBS	deep-brain stimulation	ESGL	
DCI	data collection instrument	ESC ESCMID	European Society of Cardiology
DCM	dilated cardiomyopathy	ESCMID	European Society of Clinical Microbiology and Infectious Diseases
DCT	direct Coombs test	ESPGHAN	European Society of Pediatric Gastroenterology,
DEET	<i>N,N-</i> diethyl- <i>meta-</i> toluamide (also known as		Hepatology, and Nutrition
	diethyltoluamide)	ESR	erythrocyte sedimentation rate
DES	dysfunctional elimination syndrome	ESRD	end-stage renal disease
DEXA	dual-energy X-ray absorptiometry	ETEC	enterotoxigenic Escherichia coli
DFA	direct fluorescent antibody	ETV	etravirine

xxii

EUCAST	European Committee on Antimicrobial	HBeAg	hepatitis B e-antigen
EV	Susceptibility Testing enterovirus	HBIG	hepatitis B immunoglobulin
EVD	external ventricular drain	HBsAg	hepatitis B surface antigen
		HCV	hepatitis C virus
FAUC/MIC	ratio of free (non-protein-bound) drug exposure over time, represented as area under the time-	HCW	healthcare worker
	concentration (t/C) curve, over the minimum	HDAF	human decay-accelerating factor
	inhibitory concentration	HDV	hepatitis D virus
FCAS	familial cold autoinflammatory syndrome	HEPA	high-efficiency particulate air
FCU	familial cold urticaria	HEV	hepatitis E virus
FDA	Food and Drug Administration (US)	HIDS	hyper-IgD (with periodic fever) syndrome
FESS	functional endoscopic sinus surgery	HFNC	high-flow nasal cannula
FI	fusion inhibitor	HHV	human herpesvirus
F&I	febrile and immunocompromised	Hib	Haemophilus influenzae type b
FIRS	fetal inflammatory response syndrome	HICPAC	Healthcare Infection Control Practices
5-FC	5-fluorocytosine		Advisory Committee
5-FU	5-fluorouracil	HIV	human immunodeficiency virus
FLAIR	fluid-attenuated inversion recovery	HLA	human leukocyte antigen
FMEA	failure modes and effects analysis	HLH	hemophagocytic lymphohistiocytosis
FMF	familial Mediterranean fever	hMPV	human metapneumovirus
FMT	fecal microbiota transplantation	HNS	head and neck surgery
FNA	fine-needle aspiration	HPF	high-power field
	-	HPLC	high-performance liquid chromatography
FNAB	fine-needle aspiration biopsy	HPV	human papillomavirus
FP, FN	false positive, false negative	HRV	human rhinovirus
FTA-abs	fluorescent treponemal antibody absorption	HSCT	hematopoietic stem cell transplant
FTC	emtricitabine	HSP	Henoch–Schönlein purpura
FTT	failure to thrive	HSV	herpes simplex virus
FUO	fever of unknown origin	HTLV	human T-cell lymphotropic virus
FWS	fever without a source	HUS	hemolytic–uremic syndrome
GABA	γ-aminobutyric acid	hVISA	heterogeneous vancomycin intermediate
GABHS	group A β -hemolytic <i>Streptococcus</i>	11 V 1574	Staphylococcus aureus
GAS	group A Streptococcus	IAP	intrapartum antibiotic prophylaxis
GBS	group B Streptococcus	IAT	indirect antiglobulin test
GCSF	granulocyte colony-stimulating factor	IBD	inflammatory bowel disease
GCV	ganciclovir	IBI	invasive bacterial infection
GDH	glutamate dehydrogenase	ICP	intracranial pressure
GEE	generalized estimating equation	ICU	intensive care unit
GERD	gastroesophageal reflux disease	IDSA	Infectious Diseases Society of America
GFR	glomerular filtration rate	IDU	injection drug use(r)
GGT	γ-glutamyltransferase	IE	infective endocarditis
GHD	graft-versus-host disease	IFI	
GI	gastrointestinal		invasive fungal infection
Glut1	glucose transporter type 1	Ig	immunoglobulin (IgA, IgG, IgM, etc)
G6PD	glucose-6-phosphate dehydrogenase	IGRA	interferon-γ release assay
GU	genitourinary	IHI	Institute for Healthcare Improvement
GWAS	genome-wide association study	IM	intramuscular(ly)
HAART	highly active antiretroviral therapy	INR	International Normalized Ratio
HACEK	Haemophilus, Actinobacillus	IPC	infection prevention and control
	(now Aggregatibacter), Cardiobacterium,	IPD	invasive pneumococcal disease
	Eikenella, Kingella (genera)	IPEX	immune dysregulation, polyendocrinopathy,
HAI	healthcare-associated infection	:D#E	enteropathy, X-linked
HAV	hepatitis A virus	iPrEx	preexposure prophylaxis initiative (trial; initiativa profilaxis pre-exposicion)
HBcAg	hepatitis B core antigen	IPV	inactivated polio vaccine
		** *	mara faite pono facente

IQ	intelligence quotient	MERS	Middle East respiratory syndrome
IQR	interquartile range	MFI	multiflex flow immunoassay
IRF	interferon regulatory factor	MGIT	mycobacteria growth indicator tube
IRIS	immune reconstitution inflammatory syndrome	MIBG	metaiodobenzylguanidine
ISC	International Society of Chemotherapy	MIC	minimum inhibitory concentration
I/T	immature-to-total ratio (sepsis ratio)	MLM	multilevel model
ITB	intrathecal baclofen	MLS	macrolide-lincosamide-streptogramin
IU	international unit	MMR	measles-mumps-rubella
IUD	intrauterine device	MRI	magnetic resonance imaging
IV	intravenous	MRSA	methicillin-resistant Staphylococcus aureus
IVIG	intravenous immunoglobulin	MSBP	Munchausen syndrome by proxy
JCV	John Cunningham virus	MSG	Mycosis Study Group
JDMS	juvenile dermatomyositis	MSM	men who have sex with men
JEV	Japanese encephalitis virus	MSSA	methicillin-susceptible Staphylococcus aureus
JIA	juvenile idiopathic arthritis	Mtb	Mycobacterium tuberculosis
KD	Kawasaki disease	N/A	not applicable or (data) not available (used in
KID	Kids' Inpatient Database		tables only)
KOH	potassium hydroxide	NAAT	nucleic acid amplification test
LAD	leukocyte adhesion deficiency	NADPH	nicotinamide adenine dinucleotide phosphate
LAIV	live-attenuated intranasal influenza vaccine	NASPGHAN	North American Society for Pediatric Gastroenterology,
LAM	lipoarabinomannan		Hepatology, and Nutrition
LCA	left coronary artery	NBTE	nonbacterial thrombotic endocarditis
LCH	Langerhans cell histiocytosis	NCNGU	nonchlamydia, nongonococcal urethritis
LCMV	lymphocytic choriomeningitis virus	NEMO	NF-κB-essential modulator
LCV	LaCrosse virus	NF	nuclear factor
LDH	lactate dehydrogenase	NFAT	nuclear factor of activated T cells
LF	lateral flow	NHANES	National Health and Examination Survey
LFT	liver function test	NHSN	National Healthcare Safety Network
LGBT	lesbian, gay, bisexual, transgender	NI	neurologic impairment
LGl	leucine-rich glioma	NICE	National Institute (for Health and) Clinical
LGli1	leucine-rich glioma inactivated 1	NICI	Excellence (UK)
LIP	lymphoid interstitial pneumonia	NICU	neonatal (<i>or</i> newborn) intensive care unit
LLQ	left lower quadrant	NMDA-R	N-methyl-D-aspartate receptor
LN	lymph node	NMO	neuromyelitis optica
LoR	level of reliability	NNRTI	nonnucleoside reverse transcriptase inhibitor
LOS	length of stay (in hospital)	NNT	number needed to treat
LP	lumbar puncture	NOMID	neonatal-onset multisystem inflammatory disease
LPS	lipopolysaccharide	NP	nasopharyngeal
LPV/r	lopinavir/ritonavir	NPA	nasopharyngeal aspirate
LR	likelihood ratio	nPEP	nonoccupational postexposure prophylaxis
LTBI	latent tuberculosis infection	NPS	nasopharyngeal swab
LUQ	left upper quadrant	NPUAP	National Pressure Ulcer Advisory Panel
LV	left ventricular	NPV	negative predictive value
MA	mevalonic aciduria	NPW	nasopharyngeal wash
MAC	Mycobacterium avium complex	NRTI	nucleoside reverse transcriptase inhibitor
MAI	Mycobacterium avium intracellulare	NSAID	nonsteroidal anti-inflammatory drug
MALDI-TOF	1	NTM	nontuberculous mycobacteria
MAT	time-of-flight (mass spectrometry)	NT-proBNP	<i>N</i> -terminal pro-B-type natriuretic peptide
MAT MBC	microscopic agglutination test minimum bactericidal concentration	NVP	nevirapine
MBC MDR		ODT	orally disintegrating tablet
MDR MDRO	multidrug resistance multidrug-resistant organism	OE	otitis externa
MEE	middle-ear effusion	OFPBL	oxidation–fermentation with polymyxin B, bacitracin, and lactose
141111	madie car citasion		

xxiv

OI	opportunistic infection	PICNIC	Pediatric Investigators Collaborative Network on
OM	otitis media	FICNIC	Infections in Canada
OMAS	opsoclonus-myoclonus-ataxia syndrome	PICU	pediatric intensive care unit
O&P	ova and parasite	PID	pelvic inflammatory disease
oPEP	occupational postexposure prophylaxis	PIDS	Pediatric Infectious Diseases Society
OR	odds ratio	PK	pharmacokinetic
ORS	oral rehydration solution	PLEX	plasma exchange
ORT	oral radiation therapy	PLoS	Public Library of Science
OSHA	Occupational Safety and Health Administration	PML	progressive multifocal leukoencephalopathy
OTC	over the counter	PMN	polymorphonuclear neutrophil
PA	posterior-anterior (<i>also</i> posteroanterior)	РО	per os (orally; by mouth)
PAE	postantibiotic effect (amount of time that bacterial	PPD	purified protein derivative
	regrowth is suppressed following removal of an	PPE	personal protective equipment
	antibiotic)	PPSV23	23-valent pneumococcal polysaccharide vaccine
PaLoc	pathogenicity locus in Clostridium difficile	PPV	positive predictive value
PAMP	pathogen-associated molecular pattern	PrEP	preexposure prophylaxis
PAN	polyarteritis nodosa	PRES	posterior reversible encephalopathy syndrome
PANDAS	pediatric autoimmune neuropsychiatric disorder(s) associated with streptococcal infection	PRIVENT	Prevention of Recurrent (urinary tract) Infection (in children with) Vesicoureteric (reflux) Normal (renal)
PANS	pediatric acute-onset neuropsychiatric syndrome		Tract (mnemonic)
PaO_2	partial pressure of arterial oxygen	PROS	Pediatric Research Office Settings
PAPA	pyogenic sterile arthritis; pyoderma gangrenosum	PRP	poly(ribosylribitol phosphate)
	and acne	PSRA	poststreptococcal reactive arthritis
PAPR	powered air-purified respirator	\mathbf{PT}	physical therapy
PAS	periodic acid–Schiff (stain)	PTA	peritonsillar abscess
PASOJAR	Pennsylvania Systemic Onset Juvenile Arthritis	PVA	polyvinyl alcohol
PBP	Registry	PVL	periventricular leukomalacia
PCD	penicillin-binding protein primary ciliary dyskinesia	PZA	pyrazinamide
PCF	pediatric condition falsification	Q/D	quinupristin/dalfopristin
PCN	penicillin	QI	quality improvement
PCO_2	partial pressure of carbon dioxide	RAD	reactive-airway disease
PCO_2 PCP	Pneumocystis jiroveci pneumonia	RADT	rapid antigen detection test
PCP		RAISE	Randomized controlled trial to Assess Immunoglobulin
PCK PCT	polymerase chain reaction procalcitonin		plus Steroid Efficiency
PCV	1	RAL	raltegravir
I C V	pneumococcal (protein–polysaccharide) conjugate vaccine	RBC	red blood cell
PCV13	13-valent pneumococcal conjugate vaccine	RBUS	renal bladder ultrasound
PD	pharmacodynamic	rCDI	recurrent Clostridium difficile infection
PDC	potential diagnostic clue	RCT	randomized controlled trial
PDSA	plan-do-study-act	REM	rapid eye movement
PEACH	pelvic inflammatory disease (PID) Evaluation	RIA	radioimmunoassay
	and Clinical Health Study	RIG	rabies immunoglobulin
PedsQL	Pediatric Quality of Life	RIVUR	Randomized Intervention (for children with) Vesicourethral Reflux
PEMCRC	Pediatric Emergency Medicine Collaborative Research Committee	RLQ	right lower quadrant
PFAPA	periodic fever-adenitis-pharyngitis-aphthous ulcer	RMSF	Rocky Mountain spotted fever
PfEMP1	Plasmodium falciparum erythrocyte membrane	RN	registered nurse
	protein 1	RNA	ribonucleic acid
PGM3	phosphoglucomutase 3 gene	RODEO	ROutine versus on DEmand removal Of the
PHIL	Public Health Image Library		syndesmotic stabilization screw (trial)
PHMB	poly(hexamethyl biguanide)	RPA RPR	retropharyngeal abscess
PI	protease inhibitor	RR	rapid plasma regain relative risk
PICC	peripherally inserted central	RRR	
	venous catheter	ЛЛК	relative risk reduction

	מטריומנוסווס		
RSV	respiratory syncytial virus	TIG	tetanus immunoglobulin
RT	real time	TIV	trivalent inactivated influenza vaccine
RUQ	right upper quadrant	ТМ	tympanic membrane
RV	right ventricle	TMP-SMX	trimethoprim-sulfamethoxazole
SARS	severe acute respiratory syndrome	TNFa	tumor necrosis factor alpha
SBECD	sulfobutylether-β-cydodextrin	TOA	tubo-ovarian abscess
SBI	serious bacterial infection	TORCH	Toxoplasma gondii, Other microorganisms, Rubella,
SCC	staphylococcal chromosome cassette		Cytomegalovirus, Herpes simplex virus (mnemonic)
SCID	severe combined immunodeficiency	TP, TN	true positive, true negative
SCIWORA	spinal cord injury without radiographic abnormality	TPPA	Treponema pallidum particle agglutination
Scr	serum creatinine	TRAPS	tumor necrosis factor (TNF)-receptor-associated
SD	standard deviation		periodic syndrome
SDD	susceptible-dose-dependent	TRUST	Tracking Resistance in US Today (mnemonic)
SDF	silver diamine fluoride	TSS	toxic shock syndrome
SEM	skin, eye, and mucous (also mouth) membranes	TST	tuberculin skin test
SES	socioeconomic status	TTE	transthoracic echocardiography
SHEA	Society for Healthcare Epidemiology of America	TUBC	transurethral bladder catheterization
SIADH	syndrome of inappropriate antidiuretic hormone	UA	urinalysis
	(secretion)	UGI	upper gastrointestinal (barium series)
SIDS	sudden infant death syndrome	URI	upper respiratory infection
SIM	simian immunodeficiency virus	USPHSTF	US Public Health Service Task Force
SJIA	systemic juvenile idiopathic arthritis	UV	ultraviolet
SJS	Stevens–Johnson syndrome	VAC	ventilator-associated condition
SMART	specific, measurable, achievable, relevant, time-bound	VAERS	Vaccine Adverse Event Reporting System
	(mnemonic)	VATS	video-assisted therascopic surgery
SNHL	sensorineural hearing loss	VCA	viral capsid antigen
SPAG	small-particle aerosol generator	VCUG	voiding cystourethrogram
SPECT	single-photon emission computed tomography	$V_{ m d}$	volume of distribution
SPG	sphenopalatine ganglion	VDRL	venereal disease research laboratory
SPIDS	Saudi Pediatric Infectious Diseases Society	VFR	visiting friends and relatives
SPS	sodium polyanetholsulfonate	VP	ventriculoperitoneal
SSI	surgical site infection	V/Q	ventilation/perfusion
SSPE	subacute sclerosing panencephalitis	VRE	vancomycin-resistant enterococcus
SSSS	staphylococcal scalded-skin syndrome	VSD	Vaccine Safety Datalink
SSTI	skin and soft tissue infection	VUR	vesicourethral reflux
STAT3	signal transducer and activator of transcription	VZV	varicella zoster virus
CTD	3 gene	WASP	wait-and-see prescription
STD	sexually transmitted disease	WBC	white blood cell
STEC	Shiga toxin-producing <i>Escherichia coli</i>	WHIM	warts, hypogammaglobulinemia, infections, and
TB	tuberculosis	WILLO	myelokathexis
TBE	tickborne encephalitis	WHO	World Health Organization
TCBS	thiosulfate citrate bile sucrose	WNV	West Nile virus
Tdap	tetanus–diphtheria–acellular pertussis	XLA	X-linked agammaglovulinemia
TDF-FTC	tenofovir–emtricitabine	XLP	X-linked lymphoproliferative (disease)
TDSA	thymidine-dependent <i>Staphylococcus aureus</i>	YMSM	young men who have sex with men
TEE	transesophageal echocardiography	ZDV	zidovudine

xxvi

Practical Aspects

SECTION

- 1. Laboratory Diagnosis of Bacterial, Parasitic, and Fungal Infections
- 2. Laboratory Diagnosis of Viral Infections
- 3. Vaccine Safety and Risk Communication
- 4. Infection Prevention and Control in the Office
- 5. Infection Prevention and Control in the Hospital

- 6. Infectious Diseases Epidemiology
- 7. Quality Improvement in Infectious Diseases
- 8. Antibacterial Agents
- 9. Antifungal Agents
- 10. Antiviral Agents

CHAPTERLaboratory Diagnosis of
Bacterial, Parasitic, and
Fungal Infections

Alexander J. McAdam

INTRODUCTION

The appropriate use of tests for infectious diseases in children is critical to determining the correct diagnosis. The keys to successful testing are collection and transport of an appropriate specimen to the laboratory and correct performance of the appropriate test in the laboratory. Communication between the clinician and the laboratory staff is important in diagnostic testing, particularly if a rare or fastidious organism is suspected. General guidelines for specimen collection and transport are included in this chapter, but it is important to seek guidance from the laboratory that will perform the test, as practice and test availability may vary among laboratories.

SPECIMEN COLLECTION AND TRANSPORT FOR BACTERIA AND FUNGI

Bacteria and fungi are living organisms that can proliferate or die during specimen transport to the laboratory. Survival of the pathogen is required for culture; however, growth of organisms during transport is undesirable if the quantity of bacteria is important in making a diagnosis (e.g., in urine culture) or if overgrowth by normal microbiota makes detection of a pathogen less likely (e.g., in stool culture). The time taken for transport to the laboratory should be minimized to reduce death or growth of organisms. When transport time exceeds 1–2 hours, as in th Λ outpatient office where transport times of up to 24 hours are sometimes required, use of specialized transport media may be required.¹

If it is practical to obtain them, body fluids, tissues, and purulent material are generally preferred to specimens collected on a swab.¹ The quantity of material that can be collected on a swab is small, and bacteria may remain trapped on the swab, where they cannot be detected. Throat and genital specimens for bacterial culture are exceptions to this rule, and adequate specimens can be collected from these sites using swabs. If swabs must be submitted, submit one swab for each stain or culture ordered.

Many commercial transport systems include a swab and transport media in a tube. These systems work well for most medically important bacteria and fungi. Organisms that do not survive well during transport even with transport media include *Neisseria* spp., *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Campylobacter* spp., and obligate anaerobic bacteria.¹⁻³ If these organisms are suspected, transport time to the laboratory should be minimized (<12 hours), or media should be inoculated and incubated immediately after specimen collection. Alternatively, nonculture methods of detection should be used. Submission of swabs without transport media to the microbiology laboratory should be avoided, except for throat cultures for group A *Streptococcus* (*S. pyogenes*), which survives well for 24 hours on either dry swabs or in commercial transport media.^{1,4}

Obligate anaerobic bacteria die in the presence of oxygen, so special transport containers are used for specimens from infections that are likely to include these organisms. Such infections include deep abscesses, fasciitis, and infections that have spread from body sites heavily colonized by anaerobic bacteria, including the oropharynx and intestine. Specimens from the oropharynx, intestine, and vagina generally should not be submitted for anaerobic culture because these body sites are normally colonized by obligate anaerobic bacteria. In addition, superficial skin and wound infections are unlikely to include obligate anaerobic bacteria, and so anaerobic culture is rarely useful for these infections. Unless the specimen will reach the laboratory very quickly

(minutes for small specimens and ≤ 2 hours for larger specimens), a commercial anaerobic transport tube, jar, or bag should be used to protect the viability of the bacteria.

Specimens for yeast culture can be transported as described for bacterial culture. The following comments apply to specimens in which a hyphal fungus (i.e., mold) is suspected, although yeast, if present, will also remain viable. Tissue, fluids (respiratory, urine, sterile body fluids), hair, or nail specimens for fungal culture can generally be transported in a clean, dry container without transport media.¹ If the specimen will not reach the laboratory within 2 hours, specimens from normally sterile sites can be kept at 37° C, while those from body sites with bacterial microbiota can be kept at 4° C.¹

LABORATORY METHODS FOR DETECTION, IDENTIFICATION, AND SUSCEPTIBILITY TESTING OF BACTERIA

Detection and identification of bacteria can be performed by several methods, including microscopic examination of stained specimens, culture, antigen detection, and nucleic acid amplification tests (NAAT). Examples of NAAT include polymerase chain reaction (PCR) and transcription-mediated amplification.

MICROSCOPIC DETECTION OF BACTERIA

The Gram stain remains a valuable tool for rapid detection and preliminary identification of bacteria. Gram-positive bacteria appear dark blue or purple because they have a thick peptidoglycan cell wall that retains crystal violet and iodine during destaining with alcohol. In contrast, Gram-negative bacteria have a thin layer of peptidoglycan surrounded by an outer membrane, and the alcohol rinse removes the crystal violet and iodine. After a counterstain with safranin, Gram-negative bacteria appear pink. The Gram stain also reveals the shape and arrangement of bacteria. The morphologies of commonly isolated bacteria are summarized in Table 1-1. Yeast usually stain Gram-positive, and they are easily differentiated from bacteria by their greater size.

Stains for mycobacteria include the acid-fast stain (carbol fuchsin) and auramine-O. These stains can be routinely performed on respiratory specimens and tissue and might be performed on other specimens at the discretion of the physician and laboratory staff. The modified acid-fast stain is less stringent than the acid-fast stain and is useful in detection and identification of *Nocardia, Rhodococcus, Tsukamurella,* and *Gordonia,* all of which are positive by modified acid-fast stain, but negative by regular acid-fast stain.

TABLE 1-1 Morphology of C	Drganisms Frequently Detected by Gram Stain
Morphology	Likely Organisms
Gram-positive cocci in pairs and short chains	Streptococcus pneumoniae, Enterococcus species
Gram-positive cocci in chains	Streptococcus species other than 5. pneumoniae
Gram-positive cocci in clusters	Staphylococcus species
Gram-positive bacilli	Listeria monocytogenes (small, regular rods) Corynebacterium species (small, irregular rods) Bacillus and Clostridium species (large, regular rods, may have spores)
Gram-negative cocci	Neisseria species (pairs) Moraxella catarrhalis (pairs, short chains)
Gram-negative bacilli	Escherichia coli, Yersinia enterocolitica, Salmonella species, Shigella species, and many other enteric bacteria Pseudomonas aeruginosa

TABLE 1-1 Morphology of Organisms Frequently Detected by Gram Stain

IDENTIFICATION OF BACTERIA

Culture is the mainstay for detection of most bacteria. Most aerobic and facultative anaerobic bacterial pathogens will grow rapidly in routine culture; however, some species require the use of special media. Laboratory personnel should be informed if these are suspected. Identification of bacteria grown in culture is primarily done using either biochemical tests or matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF).⁵ Identification by biochemical testing usually takes 1-2 days to identify aerobic bacteria, and 4 or more days to identify anaerobic bacteria. MALDI-TOF identification can be performed in minutes, greatly reducing the time needed to identify most bacteria.6 MADI-TOF testing is performed by placing a small spot of bacteria or yeast on a solid grid, and then overlaying the spot with a chemical matrix. The grid is placed in the MALDI-TOF device, which directs a laser at the bacteria and matrix, "desorbing" the bacteria and releasing charged fragments of bacterial proteins. The masses of the protein fragments are analyzed by mass spectrometry, resulting in a species-specific spectrum, or fingerprint, that is used to identify the bacterium. Infections with some organisms which require special culture are better detected by serology, NAAT, or antigen tests and these are noted in the tables later in this chapter.

Detection of mycobacteria in culture usually requires specific media, although rapid-growing mycobacteria (e.g., *M. fortuitum, M. chelonae, M. abscessus*) may be detected in routine bacterial culture. *Mycobacterium tuberculosis* often takes several weeks to grow in culture, although the time for growth is significantly reduced by using liquid culture media. Identification of mycobacteria by biochemical methods is time-consuming and slow. Much faster results can be obtained using nucleic acid probes or MALDI-TOF, and these methods are standard in most laboratories.^{7,8}

Antigen detection assays use antibodies specific for bacterial proteins or carbohydrates to test for bacteria. Rapid antigen tests for *S. pyogenes* (group A *Streptococcus*) are highly specific (>95%).⁹ These tests have sensitivities of approximately 70–85%, although the sensitivity is considerably lower (approximately 50%) when performed by nonlaboratory personnel.⁹ Because of the moderate sensitivities of these tests, specimens with negative results by antigen tests for *S. pyogenes* should be submitted for culture. The *S. pneumoniae* antigen test in urine is highly sensitive (100%) for pneumococcal disease in children; however, it may also be positive in asymptomatic children colonized with *S. pneumoniae*, and so it has a specificity of only 50–60%.^{10,11} Antigen tests performed on cerebrospinal fluid (CSF) are discussed below in the section on meningitis.

Both PCR and other NAAT are very sensitive because they amplify nucleic acid from the pathogen in logarithmic fashion, doubling the number of DNA or RNA molecules several times. As a result, NAAT can be more sensitive than culture, particularly for fastidious organisms. Clinical tests for many organisms are now done by NAATs, including Chlamydia trachomatis, Neisseria gonorrhoeae, Bordetella pertussis, S. agalactiae (group B Streptococcus), Streptococcus pyogenes (group A Streptococcus), methicillin-resistant S. aureus, and *M. tuberculosis*. NAAT are now available in syndromic panels.^{12,13} These panels detect several pathogens associated with a syndrome in a single test. Syndromic panels can include diverse pathogens in one test, including bacteria, viruses, parasites, and molds. Some panels also detect genetic markers of antimicrobial resistance in bacteria, such as methicillin resistance in S. aureus and carbapenem resistance in Gram-negative bacilli. Additional antibiotic susceptibility results beyond those few induced in the syndromic panel require conventional culture of the organism. There are several FDA-approved syndromic panels for detection of respiratory pathogens or intestinal pathogens, and a single such panel is available for testing cerebrospinal fluid for pathogens that cause meningitis or encephalitis. There are also NAAT panels that permit testing of blood culture bottle broth (from positive samples) for identification of bacteria, antimicrobial resistance genes, and yeast. Several of these panels are discussed in more detail in the sections on testing specific body sites later in this chapter.

ANTIBIOTIC SUSCEPTIBILITY TESTING

Antibiotic susceptibility can be tested directly by phenotypic methods, or it can be predicted using NAAT to detect genes that mediate antibiotic resistance. Phenotypic tests measure inhibition of growth or killing of bacteria by antibiotics. The minimum inhibitory concentration (MIC) is the concentration of antibiotic that inhibits visible growth of bacteria. The MIC can be determined by several methods, including culturing bacteria in a titration of antibiotics in agar or broth, or by using automated devices. The minimum bactericidal concentration (MBC) is the concentration of an antibiotic that kills 99.9% of bacteria. In practice, the MIC is easily determined and predicts the susceptibility of bacteria to antibiotics, while determination of the MBC is technically cumbersome and rarely adds information beyond that obtained from the MIC or disk diffusion testing. Thus, MBC testing is seldom performed. Disk diffusion susceptibility testing is performed by coating an agar plate with bacteria and then placing paper disks impregnated with antibiotics onto the plate. The diameter of the zone of growth inhibition around the disk is measured. The zone of growth inhibition around the disk is inversely proportional to the MIC, and the relationship between these values is the basis for interpretation of disk diffusion testing results.

Nucleic acid amplification tests are used for rapid detection of genes that cause antibiotic resistance. These can be performed in just a few hours, and are currently used for a small number of well-characterized antibiotic resistance genes, including those causing methicillin resistance in *S. aureus*, vancomycin resistance in *Enterococcus* species, carbapenem resistance in Gram-negative bacilli, and rifampin resistance in *Mycobacterium tuberculosis*. The availability and use of these tests varies greatly between laboratories.

The interpretation of MIC values or disk diffusion zones as "susceptible," "susceptible-dose-dependent," "intermediate," or "resistant" is performed according to guidelines published by the Clinical and Laboratory Standards Institute (CLSI) in the United States. An organism is considered susceptible if it is inhibited by concentrations of antibiotic that are likely to be achieved at the relevant body site with the recommended dosage, and it is considered resistant if it is not inhibited by such concentrations. A "susceptible-dose-dependent" interpretation indicates that the organism will be susceptible when larger or more frequent antibiotic doses are administered. Cefepime is currently the only antibacterial drug with an interpretation of susceptible-dose-dependent. An "intermediate" interpretation means that failure of antibiotic therapy is more likely than if the organism is susceptible, but that drugs that are normally concentrated at the site of infection (e.g., penicillin in urine) or drugs given at higher doses than usual (e.g., penicillin for intermediate S. pneumoniae in meningitis) may be effective. The intermediate range also includes a buffer zone for technical variation in the test. The concentration that antibiotics reach can be different at various body sites, so laboratories selectively report susceptibility testing according to the body site from which bacteria are isolated. For example, susceptibility results with nitrofurantoin are reported for bacteria isolated only from urine, because nitrofurantoin is concentrated in urine while reaching subtherapeutic levels in serum and tissue. Furthermore, the interpretation of antibiotic susceptibility may depend on the body site infected. Interpretations of the MICs of S. pneumoniae with penicillin, cefotaxime, and ceftriaxone depend on whether the patient has meningitis or infection only outside the central nervous system (CNS) because routinely achievable levels of these drugs in the CNS and the rest of the body differ.

Laboratory testing can, in a few cases, be used to predict whether there is a significant risk that an organism that is apparently susceptible to an antibiotic is likely to develop resistance to that antibiotic. An increased chance of developing resistance to clindamycin in *Staphylococcus* and β -hemolytic streptococci can be detected by testing for erythromycin-inducible clindamycin resistance. This is done by placing clindamycin and erythromycin disks close together in disk diffusion susceptibility testing and looking for a flattening of the zone of growth inhibition around the clindamycin disk (the *D-test*). Organisms with a positive D-test are reported as clindamycin resistant, although the laboratory may report that clindamycin may still be effective in some patients. The only test for antibiotic synergy that is routinely performed is a screen for synergy of the aminoglycosides gentamicin and streptomycin with the cell wall synthesis inhibitors penicillin, ampicillin, and vancomycin against *Enterococcus*. This is done by testing the growth of the *Enterococcus* isolate with a high level of the aminoglycoside. Although synergy testing is available for antibiotic-resistant Gram-negative organisms from patients with cystic fibrosis, there is no evidence that use of these results leads to improved patient outcomes.

LABORATORY METHODS FOR DETECTION, IDENTIFICATION, AND SUSCEPTIBILITY TESTING OF FUNGI

Fungi include both molds and yeasts. Molds grow primarily as hyphae (elongated structures that form a fuzzy-appearing colony) and spore-forming structures. *Aspergillus*, the Zygomycetes (e.g., *Mucor* and *Rhizopus*) and the dermatophytes (e.g., *Trichophyton*) are all molds. Yeast grow as round or oval forms and divide by budding. Colonies of yeast can appear smooth or rough, but not fuzzy. Yeast include *Candida* spp. and *Cryptococcus neoformans*. Dimorphic fungi grow as yeast at body temperature (including in tissue), but as molds at 25–30°C, and these include *Histoplasma capsulatum*, *Coccidioides immitis*, *Blastomyces dermatitidis*, *Sporothrix schenckii*, *Paracoccidioides brasiliensis*, and *Penicillium marneffei*.

MICROSCOPIC DETECTION OF FUNGI

Microscopic examination of specimens for fungi requires specific stains because Gram stain may stain these organisms poorly. Treatment of specimens with potassium hydroxide (KOH) renders most host tissues clear, but fungi remain visible. Calcofluor white stain, which can be combined with KOH, binds to fungal cell walls and fluoresces under ultraviolet (UV) light, making it easy to detect fungal structures. Giemsa or Wright stains are useful for detecting *Histoplasma capsulatum* in blood or bone marrow smears. Gomori methenamine silver stain is used to stain fungi in fixed tissue

IDENTIFICATION OF FUNGI

Several different media are available for fungal culture, and the choice of appropriate media depends on the specimen type and suspected fungus. It is therefore important that the specimen type (body site) be specified. Growth of *Malassezia* requires addition of lipids to the media, and so it is also important to notify the laboratory if *Malassezia* is suspected. *Malassezia* cause catheter-related infections in children receiving lipid-rich parenteral nutrition, tinea versicolor, and, less commonly, folliculitis, seborrheic dermatitis, and intravascular catheter-associated sepsis.

Identification of fungi, particularly molds and dimorphic fungi, is based primarily on the macroscopic and microscopic morphology of the organism. It may take several days to weeks for a mold to develop the distinctive morphology required for identification. Yeast can usually be identified more quickly. The germ tube assay is a test for identification of *Candida albicans*, which can be completed within a few hours after isolation of the organism in culture. MALDI-TOF can be used to identify most yeast very quickly, but is used for identification of molds by only a few laboratories.^{14,15} Biochemical and morphological identification of other types of yeast can usually be accomplished in less than a week.

Several antigen tests for fungal infections are available. The galactomannan assay detects a fungal cell wall structure and is FDA-approved for detection of invasive *Aspergillus* infection. The assay has also been reported to be positive in some cases of infection with *Histoplasma capsulatum*, *Penicillium*, *Paecilomyces*, and *Alternaria* species.^{16,17} Most studies of the utility of galactomannan testing in children have included few patients with invasive *Aspergillus* infection, and estimates of sensitivity and specificity of the test vary widely among these studies. A systematic review that combined several studies performed in children found an overall pooled sensitivity of the galactomannan test on blood of 81% and specificity of 88% for invasive fungal disease.¹⁷ Galactomannan testing can also be performed on bronchoalveolar lavage fluid, although the sensitivity and specificity are low, and results should be interpreted with particular care.18-20 A study of 72 bronchoalveolar lavage samples from children found sensitivity of 82.4% and specificity of 87.5%.²¹ Positive results in this assay are associated with administration of enteral nutrition and some antibiotics, so results must be interpreted with caution.²² The (1,3)- β -D-glucan assay (Fungitell) detects an antigen produced by many fungi, including Candida, Aspergillus, Fusarium, Trichosporon, and Pneumocystis jirovecii. Infections with Cryptococcus neoformans and the Zygomycetes (Rhizopus, Mucor, Rhizomucor, Cunninghamella, and Absidia) cannot be detected by the (1,3)- β -D-glucan tests.^{23,24} Studies of the use of the Fungitell assay for detection of invasive fungal infections in children are small, and estimates of the test's performance vary widely. If specimens are collected twice weekly in neutropenic adults with acute myelogenous leukemia or myelodysplastic syndrome, the sensitivity of the test is 100% in those with proven or probable invasive fungal infections if a single abnormally high value is counted as positive, and a positive value occurs a median of 10 days before a clinical diagnosis.²⁵ A larger, multicenter study showed a sensitivity of 64.4% and specificity of 92.4% for invasive fungal infections in adults.²³ (1,3)-β-D-glucan is common in the environment and in medical devices or solutions, and positive results have been reported following dialysis, administration of immunoglobulin, surgical gauze, or bandages.

Molecular tests for fungal pathogens are limited. There is an FDAapproved test, T2Candida Panel, for five common *Candida* species that is performed directly on blood, without the need for culture. The sensitivity of the test is reported to be high, although few actual clinical blood samples have been available for study.²⁶ Some PCR panels performed on positive blood culture samples include detection of *Candida albicans*, and a syndromic panel for use with CSF includes detection of *Cryptococcus* species.²⁷ There are NAAT for *Aspergillus* species available at some commercial and reference laboratories. These tests are not approved by the FDA but have been found to be useful ancillary tests in some studies.²⁸

ANTIFUNGAL SUSCEPTIBILITY TESTING

Susceptibility testing for fungi is performed by phenotypic tests. MIC cutoffs for determination of susceptibility of most *Candida* species are available for triazoles and echinocandins, but not for amphotericin B. There are no guidelines for interpretation of testing amphotericin B susceptibility, although organisms with an MIC of >1 μ g/mL are probably resistant. Antifungal susceptibly testing of molds is difficult and is performed in a small number of reference laboratories. Interpretive cutoffs are limited, and only *epidemiological cutoffs*, which indicate whether acquired mechanisms of antifungal resistance are present, may be available.

LABORATORY METHODS FOR DETECTION AND IDENTIFICATION OF PARASITES

SPECIMEN COLLECTION AND TRANSPORT FOR PARASITES

It is important to use one or more preservatives for transport of stool for parasite examination because some parasites rapidly become undetectable. Many laboratories request that the stool be sent in two separate preservatives for conventional, microscopic, detection of parasites: 10% buffered formalin for preparation of a stool concentrate and a preservative with poly(vinyl alcohol) (PVA) for preparation of a permanent stained slide. Commercial kits with these preservatives are available, and these have convenient tight-fitting screw caps and "fill to" lines. Preservatives that can be used for both the concentrate and permanent stained slide are available, but the laboratory should be consulted before these are used.

Pinworms (*Enterobius vermicularis*) and their eggs are not readily found in stool because the female worms exit the anus and lay their eggs on the adjacent skin. To collect the eggs for diagnosis, the sticky side of cellulose (clear) tape can be applied repeatedly to different areas of

TABLE 1-2 Special Stains for Parasites					
Parasite(s)	Stain	Specimen			
Acanthamoeba species	Calcofluor white, Giemsa, Papanicolaou, or trichrome stain (poorly stained by Gram stain)	Tissue (corneal scrapings or biopsy of lesions of cornea, brain, or skin), transport quickly to laboratory at room temperature			
Cryptosporidium parvum, Cyclospora cayetanensis, Isospora belli	Modified acid-fast stain	Stool in commercial 10% buffered formalin parasite transport kit			
Microsporidia	Modified trichrome stain, Weber green stain, Ryan blue stain				

the perianal skin, preferably first thing in the morning (before passing stool). The tape is then applied to a microscope slide, with the sticky side against the glass, and is submitted to the laboratory. Opaque or frosted tape should not be used.

If bloodborne parasites, such as malaria or babesia, are suspected, blood anticoagulated with EDTA (purple-top tube) should be submitted for preparation of blood smears.

TESTS FOR PARASITIC INFECTIONS

Routine testing for intestinal parasites includes microscopic examination of a wet concentrate and a permanent stained slide of stool or, for *E. vermicularis*, tape preparation specimens. Routine examination of stool includes a concentrated wet preparation for detection of helminths, protozoan cysts, coccidia, and microsporidia, and a permanent stain smear for protozoa. A few intestinal parasites require special stains to be detected. If these parasites are suspected, it is important to inform the microbiology laboratory so that the appropriate methods will be used. These parasites, along with the method used for detection and the recommended specimen, are listed in **Table 1-2**. Most syndromic panels for testing stool samples include more common parasites such as *Giardia*, *Cryptosporidium*, *Cyclospora cayetanensis*, and *Entamoeba histolytica*.^{13,29}

Bloodborne parasites include *Plasmodium* (malaria), *Babesia*, *Trypanosoma*, and several species of filaria. These pathogens can be detected by microscopic examination of Giemsa-stained blood smears. The use of thick blood films increases the sensitivity for *Plasmodium* and *Babesia*; however, thin smears should also be made because the morphology of the parasites is better preserved in this preparation so that species identification can be made. The Binax NOW ICT malaria test is an FDA-approved rapid immunochromatographic test that differentiates *P. falciparum* from the other *Plasmodium* species. It is sensitive for *P. falciparum* (96%) and *P. vivax* (87%), but less sensitive for *P. ovale* and *P. malariae* (both 62%) and has an overall specificity of 99%.³⁰

SPECIMEN COLLECTION AND TESTING FOR SELECTED BODY SITES

BLOOD

Blood culture bottles specifically intended for pediatric use may provide some advantage over use of adult blood culture bottles in children, although the data supporting this possibility are limited.³¹ Pediatric blood culture bottles contain a smaller volume of media than those intended for use in adults, and they also have a lower concentration of sodium polyanetholsulfonate (SPS), an anticoagulant that also inhibits the antibacterial effects of blood. SPS has been suggested to inhibit growth of some bacteria (e.g., *Neisseria meningitidis*); however, the antibacterial effect of SPS does not appear to be significant in practice.^{32,33}

The concentration of bacteria in the blood of a bacteremic child can be quite low, so the chance of detecting a bacterial pathogen is significantly increased by culturing a larger volume of blood.³¹ The concentration of bacteria in blood is less than one colony-forming unit (CFU) of viable bacteria per milliliter of blood in 23.1% of children, and <10 CFU/mL of blood in 60.3% of children with culture-confirmed bacteremia.³⁴ The sensitivity of blood culture in children increases when higher volumes of blood are cultured (e.g., sensitivity increases by approximately 20% when the volume is increased from 2 to 6 mL).³⁵

Because limited blood volume is available from children and because the yield of aerobic culture is much greater than that of anaerobic culture from children, anaerobic culture is recommended primarily in children with risk factors for sepsis with obligate anaerobes, although one small study contradicts this.^{31,36} Widely used automated continuousmonitoring pediatric blood culture systems reliably detect facultative but not obligate anaerobes. Although data are limited, risk factors for sepsis with obligate anaerobic bacteria in children may include decubitus ulcers, abdominal processes (pain, breakdown of the anatomic barrier of the intestinal tract), and neutropenia. Obligate anaerobic bacteria are also associated with deep abscesses and infections of the head and neck that extend from the oropharynx, and so anaerobic culture may also be useful in children with such infections.

Several bacteria and fungi in blood require special culture conditions or alternative methods of detection (Table 1-3). Yeast, including *Candida*, can be detected in conventional blood culture bottles and do not require use of isolator bottles.³⁷

CEREBROSPINAL FLUID

Cerebrospinal fluid (CSF) culture and Gram stain should be routinely sent if bacterial meningitis is suspected. CSF should be transported to the microbiology laboratory at room temperature within one hour of specimen collection. Routine Gram stain and culture will detect most common and uncommon causes of meningitis in children. Gram stain will detect approximately half of cases of bacterial meningitis, and falsepositive CSF Gram stain results, although uncommon, may be caused by observer misinterpretation, reagent contamination, or the use of an occluded lumbar needle that leads to contamination of the specimen with skin.38 Tests for bacterial antigens in CSF should not be performed routinely, as these are insensitive and nonspecific and do not generally add information to that obtained from Gram stain and culture results.³⁹ Even when bacterial antigens are detected in CSF, the result rarely affects patient care because the Gram stain is also nearly always positive in these patients. Obligate anaerobic bacteria are an uncommon cause of meningitis in children. Anaerobic culture of CSF should be considered, particularly when there are other infections that may give anaerobes access to the meninges or blood (e.g., sinusitis, chronic ear infections, or gastrointestinal disease) or when the anatomic protection of the meninges is compromised (e.g., due to ventricular shunt or skull fractures). Propionibacterium acnes, an anaerobe, is frequently isolated from CSF of patients who have a ventricular shunt.40

Tests for fungi in CSF should be sent in selected patients. Immunocompromised patients, particularly those with HIV infection or prolonged corticosteroid treatment, are at risk for meningitis caused by C. neoformans.⁴¹ Tests for cryptococcal antigen in CSF and blood can be done quickly and are sensitive and specific.⁴¹ In adults, tests cryptococcal antigen tests on CSF have >95% sensitivity for identification of cryptococcal meningitis. Serum tests for cryptococcal antigen to diagnose cryptococcal meningitis are approximately 75% sensitive in adults without HIV and 95% sensitive in adults with HIV.42 India ink stains have variable sensitivity for cryptococcal meningitis and should not be done unless cryptococcal antigen tests are not available.43,44 Histoplasma capsulatum and C. immitis may also be detected by antigen tests, and these results will often be available more quickly than culture results. It is reasonable to do fungal culture in addition to antigen assays if fungi are suspected, but it is important to note that fungi often take weeks to grow in culture.

An FDA-approved syndromic PCR panel for pathogens causing meningitis or encephalitis is available.^{12,27} The assay detects bacteria (*E. coli, H. influenzae, L. monocytogenes, N. meningitidis, S. agalactiae,* and *S. pneumoniae*) and viruses (enterovirus, herpes simplex viruses, and others), as well as the yeast, *Cryptococcus.* It is highly sensitive for these pathogens, and occasionally detects them correctly even if culture is negative.⁴⁵ It is important to note that bacterial meningitis is now very

	od Pathogens Detected by Specia	-		trointestinal Pathogens Detected	
Pathogen	Culture	Comments	Pathogen	Culture	Comments
Bartonella species	Collect blood in isolator tube* Culture takes up to 5 weeks	Serology or NAAT recommended	Clostridium difficile (colitis)	Common flora in children, so presence may be normal	NAAT or immunoassays for glutamate dehydrogenase and <i>C. difficile</i> toxins are recommended Reflex testing protocols in use in many laboratories
Borrelia species (relapsing fever)	Seldom available (research use)	Collect blood during fever, submit for microscopic examination Serology recommended			
Brucella species	Conventional blood culture bottles require extended incubation and blind subculture	Notify laboratory, as <i>Brucella</i> is a potential hazard to laboratory staff Consider bone marrow culture Serology recommended	Enterohemorrhagic <i>E. coli</i> (including 0157:H7)		Stool preferred to swabs Other (non-0157) enterohem- orrhagic <i>E. coli</i> can be detected by immunoassay for Shiga-like toxin
<i>Ehrlichia</i> and <i>Anaplasma</i> species	Seldom available (research use)	Microscopic examination of blood for inclusions may be helpful but is insensitive			NAAT, including syndromic panels, are available
		Serology and NAAT recommended	Helicobacter pylori	Gastric antral biopsy (not stool) should be transported to laboratory as soon as possible	Breath test, serology, or stool antigen tests are recommended
Histoplasma capsulatum	Collect blood in isolator tube* for fungal culture or collect blood in Myco/F ⁺ lytic bottle	Specimen collected in isolator tube will yield growth faster Contact laboratory for preferred bottle		in culture broth (e.g., tryptic soy broth) If transport time >1 hour, transport at 4°C	
Leptospira interrogans	Inoculate oleic acid—albumin media with 1–2 drops of blood at bedside (preferred) or collect blood with sodium	Contact laboratory to determine whether culture is available Multiple cultures are needed to		Grows on 5% sheep blood agar or modified Thayer–Martin in humidified microaerobic environment (5% 0 ₂)	
	poly(amethol sulfonate) and submit to laboratory	improve sensitivity Serology recommended	Vibrio species	Transport media (e.g., modified Cary–Blair) needed if transport time >1 hour Grow on MacConkey's or 5% sheep's blood media, but selective alkaline broth and thiosulfate citrate bile sucrose (TCBS) media enhance recovery	Stool preferred to swabs Contact laboratory to determine availability of selective broth and media NAAT, including syndromic panels, are available
<i>Malassezia</i> species (catheter infections)	Inoculate fungal media with blood, overlay with olive oil	Contact laboratory so that media will be available Also submit blood from port for Gram stain			
<i>Mycobacterium</i> species	Use an isolator tube* or culture bottles specific for mycobacteria	Contact laboratory for preferred bottle			
	mycobacteria	Specimen collected in isolator tube will yield growth slower	Yersinia	Transport media (e.g., modified	Stool preferred to swabs
Streptobacillus moniliformis (rat-bite fever)	Collect blood in citrate anticoagulant, culture with serum-supplemented media	Contact laboratory to determine whether culture is available	enterocolitica	Cary—Blair) needed if transport time >1 hour Grow on MacConkey agar at 37°C, but culture at 25°C	Cold enrichment (4°C) enhances recovery from stool but takes weeks and so is of limited utility
· · · ·	leic acid amplification tests.	וז מימוומטופ	at 37°C, but culture at 25°C enhances recovery		limited utility NAAT, including syndromic

*Isolator system from Wampole Laboratories.

[†]Myco/F lytic bottle from Becton Dickinson and Company.

rare in immunized populations, and so the positive predictive value of this test is low for some pathogens, making false-positive results more likely.^{12,27} Results of this assay should be interpreted in the context of other CSF values, such as glucose, protein, and white blood cell (WBC) levels.

ST00L

Routine stool culture usually includes *Salmonella*, *Shigella*, and *Campylobacter*. If other pathogens, such as enterohemorrhagic *E. coli* (EHEC, including *E. coli* O157:H7), *Yersinia enterocolitica*, or *Vibrio* are suspected, culture for these organisms should be specifically requested. Excreted stool is preferable to swab specimens; swab specimens should be collected only from infants or patients who are unable to produce a specimen. If a stool specimen cannot be transported to the laboratory in less than an hour, it should either transported at 4°C, or with transport media to preserve the bacteria. Enteric pathogens that require special culture conditions are shown in Table 1-4.

Enterohemorrhagic *E. coli* is among the most common bacterial causes of diarrhea in children.⁴⁶ It can be detected either by culture or by immunoassay for the Shiga toxins that it produces. Approximately half of EHEC are of the serotype O157:H7, and these can be detected using MacConkey agar containing sorbitol, which these organisms do not ferment. Most laboratories in the United States use sorbitol-containing media for detection of EHEC, although some may use more specific chromogenic agars.⁴⁷ Assays for Shiga toxins, which are produced by all serotypes of EHEC, will detect significantly more cases of EHEC infection.⁴⁶ Shiga-like toxins can be detected by immunoassays for the protein toxin, or by more sensitive NAAT for the genes encoding the toxins.⁴⁸ Most laboratories perform both a culture for *E. coli* O157:H7 and an assay for Shiga toxins, so they will detect most cases of EHEC.

panels, are available

There are several different methods available for detection of *Clostridium difficile*-associated diarrhea. Unfortunately, none of these tests performs perfectly, and the best test or group of tests for detecting *C. difficile* disease is an area of active investigation and debate.^{49,50} The most common and recommended initial tests for *C. difficile* are NAAT

that detect the genes for C. difficile toxins, or immunoassays for the glutamate dehydrogenase (GDH) protein produced by all C. difficile. Both of these assays are highly sensitive for detection of C. difficile, but there are concerns about the specificity of the tests. NAAT will detect even small numbers of organisms and may be positive in people who are colonized with the organism. Most laboratories that perform NAAT as the initial test for C. difficile will not perform additional testing, but some laboratories will use an immunoassay for C. difficile toxin as a confirmatory test on NAAT-positive specimens to increase the stringency for detecting C. difficile disease. GDH is produced by all C. difficile, including a significant number of C. difficile that do not produce toxins, and so GDH assays should not be used alone but can be used along with an assay that detects C. difficile toxin, usually an immunoassay. Finally, if the GDH assay and toxin immunoassay give different results, one positive and the other negative, some laboratories will perform a NAAT for the toxin. Regardless of the method used, positive results for C. difficile, particularly in younger children, should be interpreted carefully in the context of the patient's history and testing for other appropriate pathogens. Diagnosis of C. difficile-associated diarrhea in young children is difficult because a large proportion of healthy children younger than one year are colonized by C. difficile, which can lead to positive test results in any of the available assays.⁵¹

There are several FDA-approved syndromic gastrointestinal panels available. All of these include detection of Campylobacter, Salmonella, Shigella, and ETEC.^{12,13} The detection of other bacteria varies between assays. They can include detection of common pathogens, such as enterotoxigenic E. coli, the cause of traveler's diarrhea, as well as less common pathogens such as Vibrio species. Some panels detect organisms whose pathogenicity is poorly understood, such as enteropathogenic and enteroaggregative E. coli, both of which can be members of the normal microbiota, and so interpretation of the results can be difficult. These panels can also include detection of parasites, including Giardia, Cryptosporidium, C. cayetanensis, and Entamoeba histolytica, and some include detection of viral pathogens as well. A few of these panels include detection of C. difficile; however, many labs do not report C. difficile results from these assays because of the very different risk factors for C. difficile infection and other infectious forms of gastroenteritis.

RESPIRATORY SPECIMENS

Sputum samples are rarely performed in children, given the challenge of obtaining an adequate sample for testing and the preponderance of viruses as a cause of lower respiratory tract infection in otherwise healthy children. When obtained, sputum should be submitted for Gram stain and bacterial culture. Bacteria that commonly cause pneumonia, including streptococci, staphylococci, and H. influenzae, can be grown in routine respiratory culture. A sample collected by tracheal aspiration or bronchoalveolar lavage may be necessary in some circumstances (e.g., in a child with chronic granulomatous disease). As discussed above, the test for S. pneumoniae antigen is sensitive but not specific for invasive pneumococcal disease in children.^{10,11} There are few studies on interpretation of respiratory Gram stains in children. In adults, a high number of polymorphonuclear leukocytes and a low number of epithelial cells on Gram stain suggests that a respiratory specimen is from the lower respiratory tract and that bacterial growth is likely to be significant. A study that evaluated the utility of Gram stain in endotracheal aspirates from mechanically ventilated children revealed that the absence of bacteria on Gram stain suggests that culture is unlikely to detect a pathogen, and a separate study indicated that omitting these cultures would have little effect on patient care.^{52,53} Respiratory pathogens that are not detected by routine culture are listed in Table 1-5, and comments on some of these follow.

The appropriate specimen for diagnosis of pulmonary tuberculosis depends on the child's age and ability to produce sputum. If sputum can be produced, three sputum samples collected on separate days should be submitted for stain and culture for acid-fast bacteria.^{54,55} If sputum cannot be obtained, gastric aspirate specimens should be collected. The sensitivity of gastric aspirate culture can be increased by collection

TABLE 1-5 Respiratory Pathogens Detected by Special Techniques				
Pathogen	Culture	Comments		
Bordetella pertussis	Requires enriched media, Regan—Lowe	Consider serology or NAAT (more sensitive than culture)		
	Transport media with charcoal (Amies with charcoal or Regan— Lowe transport media) will enhance survival	Direct fluorescent antibody (DFA) tests are not adequately sensitive or specific if used alone		
<i>Burkholderia</i> <i>cepacia</i> complex	Requires selective media, <i>B. cepacia</i> —selective agar (BCSA) or oxidation—fermentation with polymyxin B, bacitracin, and lactose (OFPBL)	Consider in patients with cystic fibrosis Difficult to identify and so may require reference laboratory		
Corynebacterium diphtheriae	Use commercial swab and transport media to swab beneath membrane, if possible Requires selective media, cystine tellurite blood agar (CTBA) or tinsdale agar	Contact laboratory to determine availability of media or need for sendout to reference laboratory		
Legionella pneumophila	Requires enriched media, buffered charcoal-yeast extract (BCYE) If specimen must be transported before culture, transport at 4°C	Consider urine antigen tests (detects only serogroup 1, the cause of 80% of infections)		
<i>Mycobacterium</i> species	Collect sputum if possible, or bronchoalveolar lavage or three gastric aspirates (see text) for culture Agarose media (e.g., Middle- brook agars) and broth media [mycobacteria growth indicator tube (MGIT) system, MB/BacT, Bactec Myco/F lytic bottles] both inoculated for fastest recovery Takes up to 8 weeks	Stain for acid-fast organisms recommended (carbol fuchsin or auramine-O stain) on sputum or bronchoalveolar lavage (BAL) NAAT recommended		
Mycoplasma pneumoniae	If culture needed, use Mycoplasma transport media (2SP) or culture media (SP-4) Requires selective media, SP-4, methylene blue–glucose, or others Takes up to 4 weeks	Serology (IgM) or NAAT recommended Contact laboratory to determine availability of transport media and culture		

of the specimen first thing in the morning (before the patient eats), neutralization of the stomach acid by adding sodium bicarbonate or sodium carbonate to the specimen, and collection of three specimens on separate days before the initiation of therapy. The sensitivity of culture of gastric aspirates for *M. tuberculosis* is nearly 90% in infants, but is only approximately 50% in older children.⁵⁴ It is controversial whether gastric aspirate specimens should be stained for acid-fast bacilli, because oral acid-fast organisms can be detected in aspirates from patients who do not have pulmonary tuberculosis. In populations with a high prevalence of pulmonary tuberculosis, staining of gastric aspirates works well, but positive results should be interpreted with caution in patients at a low risk of pulmonary tuberculosis.⁵⁶

Two NAAT tests have been approved by the FDA for detection of *M. tuberculosis* in respiratory specimens, and it is recommended that a single NAAT be performed routinely in patients suspected of having pulmonary tuberculosis.⁵⁴ These tests are sensitive and specific on respiratory specimens in which acid-fast bacilli are detectable on stain (i.e., "smear-positive" specimens).⁵⁴ If acid-fast bacilli are not detectable by stain, these tests are specific, but not very sensitive, and so a positive result is highly predictive of tuberculosis, but a negative result should

not be used to rule out tuberculosis.⁵⁴ One of these NAAT also includes sensitive and specific testing for rifampin resistance in *M. tuberculosis.*⁵⁷ NAAT testing for resistance to rifampin with or without testing for resistance to isoniazid is recommended specimens that are positive for MTB by a NAAT test.⁵⁴

Bordetella pertussis can be detected by culture or PCR. Direct fluorescent antibody (DFA) assays for B. pertussis are not sensitive or specific and should not be used if other tests are available. If the patient has been symptomatic for <2 weeks, PCR of a nasopharyngeal swab, aspirate, or wash specimen is very sensitive and typically detects two- to threefold more infections than does culture.58,59 Dacron or rayon swabs with synthetic shafts are preferred because calcium alginate swabs and wooden shafts inhibit PCR. Most PCR tests detect a B. pertussis genetic sequence (IS481) that is also present in B. holmesii, which is occasionally found in human samples and can lead to false-positive PCR results for B. pertussis. The high sensitivity of PCR must be weighed against the potential for false-positive results, which have led to costly investigations of pseudo-outbreaks of pertussis.60 PCR for pertussis can be made more sensitive by amplifying other DNA sequences, such as the pertussis toxin gene promoter.⁶¹ There is no FDA approved serology test for antibodies to B. pertussis; however, some public health laboratories offer this test and it is reasonably accurate.⁶¹

Infection with *Mycoplasma pneumoniae* is best detected by NAAT of respiratory specimens or by serological testing. NAAT for *M. pneumoniae* will detect significantly more cases than detection of IgM, and both tests are reasonably specific.^{62,63} Culture of *M. pneumoniae* is difficult and slower than NAAT or serology and is not recommended for routine clinical practice.

There are several syndromic NAAT panels available for detection of respiratory pathogens.¹² These panels include a variety of viruses (adenovirus, influenza viruses, respiratory syncytial virus). Some also include detection of one or more bacterial pathogens. *C. pneumoniae*, *M. pneumoniae*, and *Bordetella* spp. are found on some panels, although none of the FDA-approved panels include all three of these pathogens. These panels are expensive and are probably best reserved for immuno-compromised and critically ill patients.⁶⁴

SEXUALLY TRANSMITTED INFECTIONS (INCLUDING PERINATAL TRANSMISSION)

Diagnosis of sexually transmitted infections in adolescents can be done by the same methods used in adults. In younger children, bacteria associated with sexually transmitted infection can be acquired from the mother during delivery or as a result of sexual abuse. The body sites affected and the diagnostic tests can therefore differ between children and adults, because of the routes of transmission and social, legal, and psychological consequences of the diagnosis. The collection of genital specimens from a prepubertal girl should be done only by experienced practitioners as it can be painful when performed incorrectly.

Neisseria gonorrhoeae can be detected by Gram stain, culture, or NAAT. Gram stain of a urethral specimen in a symptomatic adolescent male is a sensitive and specific test for *N. gonorrhoeae* infection; however, it should not be used in females or asymptomatic males. Culture for *N. gonorrhoeae* can be performed using urethral, cervical, vaginal, anorectal, conjunctival, or pharyngeal swabs. The organism is labile, and every effort should be made to culture specimens correctly. Culture conditions and alternative tests for genital pathogens are listed in **Table 1-6**. Culture is a reasonably sensitive test for *N. gonorrhoeae* (80–86%), and it is the gold standard for specificity. Molecular tests, including NAAT, for *N. gonorrhoeae* and *C. trachomatis* are discussed together below, as these are usually performed together on a single specimen.

Chlamydia trachomatis can be detected by culture and molecular tests. Immunoassays for *C. trachomatis* should be avoided because of their poor sensitivity and specificity. *C. trachomatis* culture is performed by incubating the specimen with mammalian cells, which support replication of the bacteria, and then staining the cells by immunofluorescence with antibodies specific for *C. trachomatis* 2 or 3 days later. The advantages of culture are the high (gold-standard) specificity of the test and acceptability of multiple specimen sources, including

TABLE 1-6 Genital Pathogens Detected by Special Techniques				
Pathogen	Culture	Comments		
Chlamydia trachomatis	Requires cell culture If culture needed (e.g., suspected sexual abuse), use <i>Chlamydia</i> transport media (2SP or SPG)	NAAT recommended		
Haemophilus ducreyi	Immediately inoculate conventional chocolate (5% lysed sheep blood) agar and, if available, chocolate agar supplemented with vancomycin and fetal bovine serum If specimen must be transported	Culture is insensitive Contact laboratory to determine availability of media		
Neisseria gonorrhoeae	before culture, transport at 4°C Inoculate room-temperature- selective media (modified Thayer–Martin, Martin–Lewis, or NYC medium) and incubate at 35°C with 5% CO ₂ immediately if possible If plates are transported, systems that generate CO ₂ should be used (JEMBEC, Gono-Pak, InTray GC)	Consider NAAT Swabs should be cultured within 6 hours		
Klebsiella (Calymmatobacterium) granulomatis	Seldom available (research use)	Collect scraping or biopsy of edge of lesion, submit for Wright's or Giemsa stain		

urethral, cervical, vaginal, anorectal, conjunctival, or pharyngeal swabs. Unfortunately, the sensitivity of culture for genital infection with *C. trachomatis* ranges from only 52.3% (female) to 58.9% (male), which is significantly lower than that of NAAT.⁶⁵ As a result, culture is used primarily for conjunctival and pharyngeal sites, as most laboratories cannot perform NAAT on specimens from these sites and when sexual abuse is suspected since the very high specificity makes a false-positive result unlikely.

There are several NAAT for C. trachomatis and N. gonorrhoeae. An advantage of NAAT over other tests for C. trachomatis and N. gonorrhoeae is that urine can be tested, in addition to vaginal (which can be self-collected), urethral, and cervical specimens. Other specimens (e.g., conjunctival and pharyngeal) are not approved by the FDA for testing in NAAT, but some large laboratories have validated their use and can test these specimens. Most studies of NAAT for diagnosis of these infections are performed in adults and adolescents, and data in prepubertal children are quite limited. It is difficult to compare the performance of the available NAAT because of the use of different and problematic gold standards, but NAAT are the most sensitive tests for both C. trachomatis and N. gonorrhoeae. Most studies of adults have revealed that the NAAT are >90% sensitive for both organisms and that the specificities are >97%.^{66,67} Use of urine from females may be somewhat less sensitive for both organisms than for other acceptable specimens.66

The selection of tests for diagnosis of *C. trachomatis* and *N. gonor-rhoeae* in children who may have been sexually abused is complex. Detection of these bacteria requires a sensitive test (e.g., NAAT), while the significant legal, social, and psychological consequences of a false-positive test require a very specific test (e.g., culture). A summary of the tests for bacteria and parasites recommended by the Centers for Disease Control and Prevention (CDC) at initial visit and to be considered 2 weeks later for children in cases of suspected sexual abuse is presented in **Table 1-7**.⁶⁸ The CDC does not recommend use of NAAT for *N. gonorrhoeae* if culture is available; however, NAAT can be used for detection of *C. trachomatis* in urine from girls and in vaginal secretions.